
HETEROTOPIC ENERGY FOR SOBOLEV MAPPINGS

ANTOINE DETAILLE AND JEAN VAN SCHAFTINGEN

Abstract. We study the notion of heterotopic energy defined as the limit of Sobolev
energies of Sobolev mappings in a given homotopy class approximating almost ev-
erywhere a given Sobolev mapping. We show that the heterotopic energy is finite if
and only if the mappings in the corresponding homotopy classes are homotopic on a
codimension one skeleton of a triangulation of the domain. When this is the case, the
heterotopic energy of a mapping is the sum of its Sobolev energy and its disparity
energy, defined as the minimum energy of a bubble to pass between these homotopy
classes. At the more technical level, we rely on a framework that works when the target
and domain manifolds are not simply connected and there is no canonical isomorphism
between homotopy groups with different basepoints.

1. Introduction

Given compact Riemannian manifolds M and N with m = dim M ≥ 2 and maps
u, v ∈ C∞(M, N ), we are interested in the heterotopic energy defined as

E1,m
het (u, v) := inf

{
lim inf

j→∞

ˆ
M

|Dvj |m
∣∣∣∣ vj ∈ C∞(M, N ) is homotopic to v and vj → u

}
.

In other words, the heterotopic energy quantifies the cost of approximating a given map
with mappings from a fixed homotopy class. Obviously, this quantity will be mostly
interesting only when u and v are not homotopic. In this introduction, we restrict to
smooth maps in our definitions and statements for the sake of simplicity, especially when
speaking about homotopy classes; the definition and the discussion extend to a lower
regularity setting, as we will carefully discuss in the body of the text starting from
Definition 2.6.

Even though, to the best of our knowledge, the notion of heterotopic energy has never
been defined as such in the existing literature, such a problem of finding the minimal
energy cost for approximating a map from another homotopy class is a pervasive question
in the realm of mappings into manifolds. This is our main motivation for introducing
this quantity and studying its main properties. To be more specific, we list below a few
possible applications, along with references.

First, sequences of mappings converging weakly to a mapping in another homotopy
class appear in bubbling phenomena for harmonic and p-harmonic maps [7; 8; 29, §4.5;
37; 42; 48].

Such sequences also appear naturally in the problem of weak approximation of Sobolev
mappings in W1,p(M, N ) where p ∈ N and p < m = dim M, where weakly approximating
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sequences yield thanks to a Fubini argument and Fatou’s lemma sequences converging
weakly on p-dimensional submanifolds and subskeletons [3, 24,25,35]. The definition of
heterotopic energy shares many features of Bethuel, Brezis, and Coron’s relaxed energy
[4].

Finally, this quantity provides a way of measuring the distance between homotopy
classes, in the spirit of, notably, [11, 12, 28, 40, 47], although with no apparent formal
mathematical connection.

The goal of this work is to characterize the heterotopic energy. To make more natural
the definitions that are necessary to state our main result, let us first present a naive
strategy to obtain competitors in the definition of E1,m

het (u, v) in the special case where
M = N = Sm. We assume for the sake of simplicity u to be constant in some small
geodesic ball B̄ρ(a) ⊂ Sm with ρ sufficiently small; it is possible to return to this situation
thanks to the opening procedure, that will be explained in Lemma 4.20.

Since homotopy classes of mappings Sm → Sm are completely characterized by the
degree of Brouwer, we can define vj as the map obtained from u by inserting in the
smaller ball B̄rj (a), with 0 < rj < ρ and rj → 0 as j → ∞, a map having degree equal to
deg v − deg u; with this definition, it is clear that vj is homotopic to v and that vj → u
as j → ∞. Hence, vj is a competitor for E1,m

het (u, v). To obtain a competitor as good as
possible, we are led to chose the map that we insert in the ball B̄rj (a) with an energy
as small as possible. In other words, we aim at taking a map that minimizes the W1,m

energy among all maps having degree equal to deg v − deg u and with fixed value on the
boundary of the ball.

This seemingly naive strategy is at the core of our work. To implement it in greater
generality, we define, if u = w in M \ Bρ(a) with ρ sufficiently small, the topological
disparity [u, w, Bρ(a)] as the homotopy class of maps in C∞(Sm, N ) that are homotopic
to a map given by u|B̄ρ(a) on the northern hemisphere and by w|B̄ρ(a) on the southern
one (see §4.1). The topological energy of the disparity is then defined as (see §4.2)

E1,m
top ([u, w, Bρ(a)]) := inf

{ˆ
Sm

|Df |m
∣∣∣∣ f ∈ [u, w, Bρ(a)] ⊆ C∞(Sm, N )

}
.

Here and in what follows, we assume that we have fixed once for all an identification of
the ball Bm with both the northern and the southern hemispheres of Sm that coincide on
the equator. Although the homotopy class [u, w, Bρ(a)] does depend on the choices of
orientations when identifying the geodesic ball B̄ρ(a) with Bm, this is not the case for its
energy E1,m

top ([u, w, Bρ(a)]). We define the disparity energy of u with respect to v as (see
§4.3)

E1,m
disp(u, v) := inf

{
E1,m

top ([u, w, Bρ(a)])
∣∣∣ w ∈ C∞(M, N ) homotopic to v

and u = w in M \ Bρ(a)
}

.

We will show that the disparity energy induces a distance on homotopy classes in
C∞(M, N ) (see Proposition 4.15 below).

Our first main result is that the energy disparity is essentially equivalent to the
heterotopic energy.
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Theorem 1.1. For every u, v ∈ C∞(M, N ),

E1,m
het (u, v) =

ˆ
M

|Du|m + E1,m
disp(u, v) . (1.1)

In particular, E1,m
het (u, v) < ∞ if and only if u and v are homotopic on an (m − 1)-

dimensional triangulation of M.

The necessity of the homotopy condition for E1,m
het (u, v) < ∞ in Theorem 1.1 is due

to Hang and Lin [23, Theorem 6.1] (see also [22, Theorem 4.1; 50, Theorem 2.1]). This
condition is part of the pervasive phenomenon of homotopic stability on lower-dimensional
sets [10,22,41,50].

When M = Sm or more generaly if idMm−1 is homotopic to a constant in C(Mm−1, M),
then E1,m

het (u, v) < ∞. On the other hand, we will have E1,m
het (u, v) = ∞ if, given

u′, v′ ∈ C(M′, N ) that are not homotopic with dim M′ ≤ m − 1 and M = M′ × M′′,
we consider u(x′, x′′) := u′(x′) and v(x′, x′′) := v′(x′); this may happen for instance if
πℓ(N ) ̸≃ {0} with M′ = Sℓ, and thus in particular if N = Sℓ: assume that an (m − 1)-
dimensional triangulation Mm−1 is chosen so that it contains a product of M′ with a
triangulation of M′′ – we note that being homotopic on a triangulation does not depend
on the choice of the triangulation; in this case, u and v cannot be homotopic on Mm−1,
for otherwise it would restrict to a homotopy on M′. We will also have E1,m

het (u, v) = ∞
if u is constant and v ∈ C∞(RPm,RPn) is the canonical injection of RPm in RPn with
m ≤ n, since v|RP1 is then the generator of π1(RPn).

The identity (1.1) in Theorem 1.1 states that one cannot do better than the naive
strategy that we have just presented: modifying the map u only in a small ball to obtain
maps homotopic to v and converging to u yields the optimal contribution to E1,m

het (u, v).
In some special situations, the expression of the heterotopic energy can be simplified,

and allows to recover some familiar formulas. Corollary 1.2, Corollary 1.3, and Corol-
lary 1.4 below follow directly from Theorem 1.1, the definition of the disparity energy,
and Proposition 4.9, Proposition 4.10, or Proposition 4.11 respectively.

The model example deals with mappings into spheres, where the heterotopic energy
can be computed from the difference of degree between the maps u and v.

Corollary 1.2 (Mappings into spheres). For every u, v ∈ C∞(M,Sm),
(i) if M is orientable, then

E1,m
het (u, v) =

ˆ
M

|Du|m + mm/2|Sm||deg u − deg v| ,

(ii) if M is not orientable, then

E1,m
het (u, v) =


ˆ

M
|Du|m if u and v are homotopic,

ˆ
M

|Du|m + mm/2|Sm| otherwise.

At the heart of the above formula is the fact that, for mappings between spheres,
the degree of Brouwer completely encodes homotopy classes. The difference from the
orientable and the non-orientable case comes from the fact that the degree of Brouwer is



HETEROTOPIC ENERGY FOR SOBOLEV MAPPINGS 4

well-defined for sphere-valued maps defined on an orientable manifold, while when the
domain is not orientable, there are only two homotopy classes of maps into Sm (see also
the remark after Lemma 4.1).

A similar situation occurs for mappings into the real projective spaces RPm.

Corollary 1.3 (Mappings into projective spaces). Assume that M is simply connected.
For every u, v ∈ C∞(M,RPm),

E1,m
het (u, v) =

ˆ
M

|Du|m + mm/22|RPm|du,v .

In Corollary 1.3, du,v is defined in terms of the covering ũ and ṽ ∈ C(Sm, Sm) of u and
v respectively, as du,v := |deg ũ − deg ṽ| if m is odd and du,v := ||deg ũ| − |deg ṽ|| if it is
even.

In Corollary 1.2 and Corollary 1.3, the energy gap between the heterotopic energy and
the Sobolev energy is linear with respect to the difference of degree between the maps
u and v. As expressed by Theorem 1.1, this is directly related to the rate of growth of
the minimal energy required to construct a map with fixed degree. For a general target
manifold N however, the such rate of growth need not be linear. For more details as well
as references, see Proposition 4.12 and the comment below the proposition.

A common feature in both Corollary 1.2 and Corollary 1.3 is that the energy involves
the area of the homotopy class formed by the difference between u and v. Our next
statement expresses that this is not an isolated phenomenon, and that there is always a
relation between the heterotopic energy and the minimal area enclosed by the maps u
and v, provided that one works with the language of homology.

Corollary 1.4. Assume that M is orientable. For every u, v ∈ C∞(M, N ),

E1,m
het (u, v) ≥

ˆ
M

|Du|m + mm/2 Area([u(M)] − [v(M)]) ,

and equality occurs when m = 2 and the Hurewicz homomorphism hur : πm(N ) → Hm(N )
is an isomorphism, where Area([u(M)] − [v(M)]) denotes the minimal area of a map
realizing the homology class [u(M)] − [v(M)], taking into account the multiplicity.

As will be shown, the lower estimate follows from the arithmetico-geometric inequality
to relate the Jacobian and the differential of a map, while the equality case follows from
the so-called Morrey ε-conformality theorem [31], which is available only in dimension 2.

The assumption that M is orientable ensures that M itself is a homology cycle, so
that the cycles [u(M)] and [v(M)] are well-defined. In this case, for any ball Bρ(a) ⊂ M,
the homology class associated with the disparity between u and a map w homotopic to v
may be computed as

hur([u, w, Bρ(a)]) = [u(M)] − [w(M)] = [u(M)] − [v(M)] .
The increasing complexity of the statements of the above corollaries pertains to a

crucial technical difficulty when working with free homotopy classes, and that will be
of key importance to us in our choice of formalism to work with. When M = Sm, the
homotopy class [u, w, Bρ(a)] appearing in the definition of the disparity energy E1,m

disp(u, v)
is the difference in πm(N , u(c)) between the classes corresponding to u and w for any
c ∈ M \ Bρ(a). Letting b = u(c), the class corresponding to w will be independent on b
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if and only if the the action of π1(N , b) on πm(N , b) is trivial. This will be the case for
instance when π1(N , b) ≃ {0}, including in particular the case N = Sm (see Corollary 1.2)
or when π1(N , b) acts trivially on πm(N , b), covering the case N = RPm with m odd
(see Corollary 1.3). Otherwise, one needs to take into account the action of π1(N , b)
on πm(N , b); this is what Corollary 1.3 does when m is even. On the domain side, the
homotopy classes from a general domain M to N do not have in general a group structure,
and we need thus a formalism that gives a meaning to the difference between homotopy
classes. These considerations show that purely algebraic manipulations in πm(N ) cannot
describe the difference in topology and justify our need to rely on a formalism and
computation methods that take into account the way individual topological charges are
interlinked.

At the core of the proof of the upper estimate on E1,m
het (u, v) lies the insertion strategy

that we sketched above. Concerning the lower estimate, it relies on an instance of a
bubbling phenomenon. Therefore, we next present a bubbling statement fitted to our
purposes.

Theorem 1.5. For every u, v ∈ C∞(M, N ), if (vj)j∈N is a sequence in C∞(M, N ) that
converges almost everywhere to u, if for every j ∈ N, vj is homotopic to v, and if

sup
j∈N

ˆ
M

|Dvj |m < ∞ ,

then up to a subsequence, there exist points a1, . . . , aI ∈ M such that, for every radius
ρ ∈ (0, ∞) sufficiently small, there exists a map w ∈ C∞(M, N ) such that w = u in
M \

⋃I
i=1 Bρ(ai), w is homotopic to v, for every i ∈ {1, . . . , I},

lim
r→0

lim inf
j→∞

ˆ
Br(ai)

|Dvj |m ≥ E1,m
top ([u, w, Bρ(ai)]) , (1.2)

and
I∑

i=1
E1,m

top ([u, w, Bρ(ai)]) ≥ E1,m
disp(u, v) . (1.3)

Bubbling statements, such as Theorem 1.5 and its companion Theorem 5.1 in the
body of the text, are ubiquitous in the study of weakly converging maps; see for instance,
but not only, [3, Remark 1; 16, Proposition 2.1; 20, Theorem 3.1.5.1; 23, Theorem 10.1;
25, Proposition 3.4]. We draw the attention of the reader to the very sharp and general
character of both bubbling results that we present here: they apply to any weakly
converging sequence, and they relate the atoms of the limiting measure towards which
the convergence of the differential occurs to the topological defect between the homotopy
classes, which can be realized by one given map w, homotopic to v, and which differs
from u only on a finite number of small balls. We believe that stating such precise results
and providing them with a complete proof is also of independent interest.

2. The heterotopic energy on Sobolev spaces

2.1. Continuous, VMO, and Sobolev homotopies. Whereas the introduction was
restricted to the case of smooth maps for the simplicity of the exposition, our discussion
can be extended to a lower regularity framework where the notion of homotopy carries
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out. It will therefore be instrumental to our endeavor to consider homotopies between
low regularity maps. For this purpose, we begin this section with a short exposition of
the notion of homotopy in various functions spaces. We start with the most classical
setting of continuous maps.

Two maps u, v ∈ C(M, N ) are said to be homotopic in C(M, N ) whenever there exists
a mapping H ∈ C([0, 1] × M, N ) such that H(0, ·) = u and H(1, ·) = v. When M is
compact, u and v are homotopic if and only if there exists H ∈ C([0, 1], C(M, N )) such
that H(0) = u and H(1) = v, where the space C(M, N ) is endowed with the topology
of the uniform distance. Moreover, if N is compact, there exists δ ∈ (0, ∞) such that
if d(u, v) ≤ δ everywhere in M, then u and v are homotopic. Indeed, it suffices to
take H(t, x) = ΠN ((1 − t)u(x) + tv(x)), where ΠN is the nearest-point retraction of a
neighbourhood of N on N .

Most of the homotopy theory carries on in the framework of maps of vanishing mean
oscillation [13, 14] (see also [6]). A function u : M → Rν belongs to VMO(M,Rν)
whenever

lim
δ→0

sup
a∈M

0<r<δ

 
Br(a)

 
Br(a)

|u(x) − u(y)| dx dy = 0 .

The space u : M → Rν is endowed with the norm
∥u∥BMO := ∥u∥L1 + |u|BMO ,

where
|u|BMO := sup

a∈M
r>0

 
Br(a)

 
Br(a)

|u(x) − u(y)| dx dy .

Continuous functions are a dense subset of VMO(M,Rν) [43]. One defines then
VMO(M, N ) :=

{
u ∈ VMO(M,Rν)

∣∣ u ∈ N almost everywhere
}

.
The topology of VMO(M, N ) – and of VMO(M,Rν) – can also be described by the
basis of open sets (see [13, Lemma A.16]){

v : M → N
∣∣∣∣ ˆ

M
d(u, v) < ε and sup

a∈M
0<r<δ

 
Br(a)

 
Br(a)

d(u(x), u(y)) dx dy < η

}
,

when u runs over all maps in VMO(M, N ) and ε, δ, and η run over all positive numbers.
One can then define maps u and v ∈ VMO(M, N ) to be homotopic in VMO(M, N )

whenever there exists a mapping H ∈ C([0, 1], VMO(M, N )) such that H(0) = u and
H(1) = v.

Homotopy classes are also open sets in VMO(M, N ):

Proposition 2.1 (Brezis & Nirenberg [13, Lemma A.19]). The path-connected components
of VMO(M, N ) are open.

For continuous maps, homotopies in VMO(M, N ) and in C(M, N ) are equivalent:

Proposition 2.2 (Brezis & Nirenberg [13, Lemma A.20]). Given u, v ∈ C(M, N ), the
following are equivalent:

(i) u and v are homotopic in VMO(M, N ),
(ii) u and v are homotopic in C(M, N ).
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Since C(M, N ) is open, it follows that every path-connected component of VMO(M, N )
contains a unique path-connected component of C(M, N ) [13, Lemma A.21]. A stronger
result shows that the inclusion C(M, N ) ⊆ VMO(M, N ) is a homotopy equivalence [1].

Even though it will not be used in the sequel, it is conceptually interesting to note that
homotopies in VMO(M, N ) can be characterized with maps in VMO([0, 1] × M, N ):

Proposition 2.3 (Brezis & Nirenberg [14, Corollary 3]). The maps u, v ∈ VMO(M, N )
are homotopic in VMO(M, N ) if and only if there exists a mapping H ∈ VMO([0, 1] ×
M, N ) such that if t ∈ [0, 1/3], H(t, ·) = u and if t ∈ [2/3, 1], H(t, ·) = v.

We finally consider Sobolev mappings. We say that the maps u, v ∈ W1,m(M, N )
are homotopic whenever there is some mapping H ∈ C([0, 1], W1,m(M, N )) such that
H(0) = u and H(1) = v.

Proposition 2.4. The path-connected components of W1,m(M, N ) are open.

The proof of Proposition 2.4 relies on Schoen and Uhlenbeck’s seminal observation
that, even though averages of maps in W1,m(M, N ) do not converge uniformly, they
still take values close to the target manifold M [45] (see [22, §4] for detailed similar
arguments for homotopies).

Proposition 2.4 still holds in W1,p(M, N ) with p ̸= m in an even weaker form:
connected components are sequentially weakly closed rather than strongly closed; when
p > m this is a standard application of the Sobolev–Morrey embedding and Arzelà–
Ascoli’s compactness criterion; when p < m this is due to Hang and Lin [22].

The space VMO is the largest among the three that we consider in this section:
we clearly have C(M, N ) ↪→ VMO(M, N ), and it also holds that W1,m(M, N ) ↪→
VMO(M, N ) by virtue of the limiting case of the Sobolev–Morrey embedding; see,
e.g., [13, Example 1]. The notions of homotopy in W1,m(M, N ), VMO(M, N ), and
C(M, N ) are equivalent [9]; the proof also relies on Schoen and Uhlenbeck’s estimate.

Proposition 2.5. Given u, v ∈ W1,m(M, N ), the following are equivalent:
(i) u and v are homotopic in W1,m(M, N ),

(ii) u and v are homotopic in VMO(M, N ).
If moreover u and v are continuous, then the previous assertions are equivalent to

(iii) u and v are homotopic in C(M, N ).

For both continuous and VMO maps, homotopies could equivalently be defined as
mappings on the product [0, 1] × M with suitable boundary condition, or continuous
mappings from [0, 1] to the corresponding space on M. In Sobolev spaces, a suitable
notion of restriction to the boundary is given by the trace. However, in contrast to the
situation in C(M, N ) and VMO(M, N ), one can have u = tr{0}×MH and v = tr{1}×MH
with H ∈ W1,m([0, 1]×M, N ) without having u and v homotopic in W1,m(M, N ). Indeed,
one can take u, v ∈ C∞(M, N ) such that u = v on an (m − 1)-dimensional triangulation
Mm−1 and construct H by homogeneous extension from [0, 1] × Mm−1 ∪ {0, 1} × M.

2.2. Heterotopic energy. With these reminders about homotopies, we are now in
position to define the heterotopic energy for maps of lower regularity.
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Definition 2.6. Given u : M → N and v ∈ VMO(M, N ), we define the heterotopic
energy of u with respect to v as

E1,m
het (u, v) := inf

{
lim inf

j→∞

ˆ
M

|Dvj |m
∣∣∣∣ vj ∈ W1,m(M, N ) is homotopic to v

and vj → u a.e. in M
}

. (2.1)

Equivalently, one has

E1,m
het (u, v) = sup

δ>0
inf

{ˆ
M

|Dw|m
∣∣∣∣ w ∈ W1,m(M, N ) is homotopic to v

and
ˆ

M
d(u, w)m ≤ δ

}
. (2.2)

The following proposition shows that we can further restrict the infimum in (2.2) to
smooth maps.

Proposition 2.7. If u : M → N and v ∈ VMO(M, N ), then

E1,m
het (u, v) = sup

δ>0
inf

{ˆ
M

|Dw|m
∣∣∣∣ w ∈ C∞(M, N ) is homotopic to v

and
ˆ

M
d(u, w)m ≤ δ

}
.

Proof. This readily follows from (2.2), the density of smooth maps in W1,m(M, N ) [45],
and the stability of homotopy classes in W1,m(M, N ) (Proposition 2.4). □

We next state a straightforward lower bound on the heterotopic energy, given by the
Sobolev energy of the map itself. In particular, it implies that a map u : M → N can
have a finite heterotopic energy only if it belongs to W1,m(M, N ).

Proposition 2.8. For every u : M → N and v ∈ VMO(M, N ),ˆ
M

|Du|m ≤ E1,m
het (u, v) .

In particular, if E1,m
het (u, v) < ∞, then u ∈ W1,m(M, N ) ⊆ VMO(M, N ).

Proof. If E1,m
het (u, v) < ∞, then by definition in (2.1) there exists a sequence (vj)j∈N in

W1,m(M, N ) such that

lim sup
j→∞

ˆ
M

|Dvj |m ≤ E1,m
het (u, v)

and vj → u almost everywhere in M; by lower semicontinuity we then get that u is
weakly differentiable and ˆ

M
|Du|m ≤ lim inf

j→∞

ˆ
M

|Dvj |m . □

The following proposition is nothing else but a lower semicontinuity property of the
heterotopic energy with respect to the convergence in measure.
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Proposition 2.9. If (uj)j∈N is a sequence of measurable mappings from M to N
converging to u : M → N in measure, then

E1,m
het (u, v) ≤ lim inf

j→∞
E1,m

het (uj , v) .

Proof. This follows from the definition of heterotopic energy E1,m
het (uj , v) (Definition 2.6)

and a diagonal argument. □

We conclude this section with a straightforward exact computation of the heterotopic
energy of a map with respect to another map in the same homotopy class.

Proposition 2.10. If u ∈ VMO(M, N ) and v ∈ VMO(M, N ) is homotopic to u in
VMO(M, N ), then

E1,m
het (u, v) =

ˆ
M

|Du|m . (2.3)

Proof. The lower bound on E1,m
het (u, v) follows directly from Proposition 2.8. Moreover,

in view of Proposition 2.8, we can assume that u ∈ W1,m(M, N ), or equivalently, that
the right-hand side of (2.3) is finite. Therefore, we can use u itself as a competitor in the
equivalent definition (2.2), which immediately gives the upper bound and concludes the
proof. □

3. Finiteness criterion

The goal of this section is to prove that the heterotopic energy can only be finite for
mappings that are homotopic on a suitable skeleton.

We assume that we are given a triangulation of our domain manifold M once for
all, that is, we have a finite m-dimensional simplicial complex and a homeomorphism
between the realisation of this complex and M whose restriction to any closed simplex of
the complex is a smooth diffeomorphism on its image in M. Since our domain manifold
M is smooth, such a triangulation always exists [15]. For every ℓ ∈ {0, . . . , m}, we let
Mℓ denote the ℓ-dimensional component of M defined as the union of the images of the
closed ℓ-dimensional simplices of the simplicial complex defining our triangulation.

Theorem 3.1. Let u : M → N and let v ∈ C(M, N ). The following are equivalent:
(i) E1,m

het (u, v) < ∞,
(ii) u ∈ W1,m(M, N ) and u is homotopic in VMO(M, N ) to some w ∈ C(M, N )

such that w|Mm−1 = v|Mm−1,
(iii) u ∈ W1,m(M, N ) and trMm−1 u is homotopic in VMO(Mm−1, N ) to v|Mm−1.

Here and in the sequel, we require that the traces of the Sobolev maps that we consider
with respect to our fixed triangulation are compatible. More specifically, we write
u ∈ W1,m(M, N ) whenever, for every (m − 1)-dimensional simplex σ of the triangulation,
we have u|σ ∈ W1,m(σ, N ), and if τ is another (m − 1)-dimensional simplex of the
triangulation such that dim(σ ∩ τ) = m − 2, then trσ∩τ u|σ = trσ∩τ u|τ .

The space VMO(Mm−1, N ) is described similarly to VMO(M, N ), using the mea-
sure by the Riemannian metric on Mm−1 and the intersections of geodesics balls with
Mm−1. By the fractional limiting case of the Sobolev–Morrey embedding combined with
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Gagliardo’s trace theorem, if u ∈ W1,m(M, N ), then trMm−1 u ∈ VMO(Mm−1, N ) and
the corresponding mapping is continuous.

The remaining part of this section is devoted to the proof of Theorem 3.1. Obtaining (iii)
from (ii) is readily done by a standard argument involving the continuity of traces. To
go from (i) to (ii), the core of the argument is a standard homotopy result for maps
that are sufficiently close in Lm and have sufficiently small W1,m energy. Such a result is
stated in Proposition 3.3, which itself relies on Lemma 3.2, and is in line with Schoen
and Uhlenbeck’s seminal estimate.

In order to obtain (i) from (iii), we proceed in two steps. We first explain, when
trMm−1 u is homotopic to v|Mm−1 , how to replace v with another map, with the same
trace as u on Mm−1, and which is homotopic to v on the whole M. This task is carried
out by Lemma 3.5 and Lemma 3.6, and relies on a cylinder insertion construction, to
suitably modify the values of v near the skeleton Mm−1. Thanks to this first step, one
may assume that u and v have the same trace on Mm−1. The second step, which is
contained in Lemma 3.7, consists of inserting, on a small ball inside each simplex of the
triangulation, a bubble to replace u with a map homotopic to v.

Lemma 3.2. Given ℓ ∈ {1, . . . , m − 1} satisfying ℓ < p, there exists a constant such that
if u, v ∈ W1,p(Mℓ, N ), then for almost every x ∈ Mℓ,

d(u(x), v(x))p ≤ C

(ˆ
Mℓ

|Du|p + |Dv|p + d(u, v)p
) ℓ

p
(ˆ

Mℓ

d(u, v)p
)1− ℓ

p

.

Estimates like in Lemma 3.2 are classical in the study of Sobolev mappings [22, (3.6);
30, p. 453; 50, Th. 1.1]. Its core ingredient is the Sobolev–Morrey embedding.

Proof of Lemma 3.2. Since Mℓ is a finite union of diffeomorphic images of simplices, it
is sufficient to establish the estimate on an ℓ-dimensional simplex, or equivalently on the
unit ball Bℓ.

Assuming that u, v ∈ W1,p(Bℓ, N ), for almost every x ∈ Bℓ and every r ∈ (0, 1], we
have

d(u(x), v(x)) ≤
 

Bℓ∩Br(x)

d(u(x), u(y)) dy +
 

Bℓ∩Br(x)

d(u(y), v(y)) dy +
 

Bℓ∩Br(x)

d(v(y), v(x)) dy .

(3.1)
We have then by the Sobolev–Morrey embedding

 

Bℓ∩Br(x)

d(u(x), u(y)) dy ≤ C1r
1− ℓ

p

(ˆ
Bℓ

|Du|p
) 1

p

(3.2)

and
 

Bℓ∩Br(x)

d(v(x), v(y)) dy ≤ C1r
1− ℓ

p

(ˆ
Bℓ

|Dv|p
) 1

p

, (3.3)
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whereas by Jensen’s inequality
 

Bℓ∩Br(x)

d(u(y), v(y)) dy ≤ C2r
− ℓ

p

(ˆ
Bℓ

d(u, v)p
) 1

p

. (3.4)

Defining t ∈ (0, ∞) such that

tp

ˆ
Bℓ

|Du|p + |Dv|p =
ˆ
Bℓ

d(u, v)p ,

the conclusion follows from (3.1), (3.2), (3.3), and (3.4), with r := min(1, t). □

With Lemma 3.2 at hand, we are in position to state the following homotopy result
for maps that are sufficiently close and have controlled W1,m energy.

Proposition 3.3. There exists η ∈ (0, ∞) such that if u, v ∈ W1,m(M, N ) and if(ˆ
Mm−1

|Du|m + |Dv|m
)1− 1

m
(ˆ

Mm−1
d(u, v)m

) 1
m

≤ η ,

then
(i) trMm−1 u and trMm−1 v are homotopic in VMO(Mm−1, N ),

(ii) there exist ũ ∈ C(M, N ) and ṽ ∈ C(M, N ) that are homotopic in VMO(M, N )
to u and v respectively, and satisfying ũ|Mm−1 = ṽ|Mm−1.

Remark 3.4. By Young’s inequality, ifˆ
M

|Du|m + |Dv|m + d(u, v)m

εm
≤ η

ε
,

then the assumptions – and hence the conclusion – of Proposition 3.3 hold.

Proof of Proposition 3.3. By the homotopy theory in W1,m(M, N ), there exists η0 such
that if ˆ

M
|Du|m + |Dv|m ≤ η0 ,

then u and v are both homotopic to a constant in W1,m(M, N ) and the conclusion then
follows.

Otherwise, since the volume of M is finite and since N is compact, we haveˆ
M

d(u, v)m ≤ C1

ˆ
M

|Du|m + |Dv|m .

Letting ΠM be the nearest point projection on M ⊆ Rµ and defining, for h ∈ Rµ with
|h| ≤ δ and δ sufficiently small,

uh := u ◦ ΠM(· − h)|M and vh := v ◦ ΠM(· − h)|M ,

we have, by (i) Hölder’s inequality, (ii) Fubini’s theorem combined with the fact that
ΠM(· − h)|M is a diffeomorphism on M whenever h is sufficiently small and the change
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of variable, and (iii) the chain rule in Sobolev spaces,
ˆ

Bδ

(ˆ
Mm−1

|Duh|m + |Dvh|m + d(uh, vh)m
)1− 1

m
(ˆ

Mm−1
d(uh, vh)m

) 1
m

dh

≤
(ˆ

Bδ

ˆ
Mm−1

|Duh|m + |Dvh|m + d(uh, vh)m dh

)1− 1
m

×
(ˆ

Bδ

ˆ
Mm−1

d(uh, vh)m dh

) 1
m

≤ C2

(ˆ
M

|Du|m + |Dv|m + d(u, v)m
)1− 1

m
(ˆ

M
d(u, v)m

) 1
m

≤ C3

(ˆ
M

|Du|m + |Dv|m
)1− 1

m
(ˆ

M
d(u, v)m

) 1
m

.

(3.5)

The exists thus h ∈ Rµ such that |h| ≤ δ,

trMm−1 uh = uh|Mm−1 ∈ W1,p(Mm−1, N ) ,
trMm−1 vh = vh|Mm−1 ∈ W1,p(Mm−1, N ) ,

and (ˆ
Mm−1

|Duh|m + |Dvh|m + d(uh, vh)m
)1− 1

m
(ˆ

Mm−1
d(uh, vh)m

) 1
m

≤ C4

(ˆ
M

|Du|m + |Dv|m
)1− 1

m
(ˆ

M
d(u, v)m

) 1
m

dh .

By Lemma 3.2, we have
ess sup

x∈Mm−1
d(uh, vh) ≤ C5η ,

and thus in particular, if η is chosen sufficiently small, then trMm−1 uh and trMm−1 vh are
homotopic as continuous maps and thus in W1−1/m,m(Mm−1, N ). By the continuity of
the trace, trMm−1 u and trMm−1 v are homotopic in W1−1/m,m(Mm−1, N ), and we have
proved (i).

In order to get (ii), we observe that u and v are homotopic in W1,m(M, N ) to some
û ∈ C(M, N )∩W1,m(M, N ) and v̂ ∈ C(M, N )∩W1,m(M, N ) respectively. By continuity
of traces, trMm−1 û and trMm−1 v̂ are homotopic in W1−1/m,m(Mm−1, N ), and thus in
C(Mm−1, N ) by virtue of Proposition 2.5. By the homotopy extension property, û is
homotopic to some mapping ũ ∈ C(M, N ) such that ũ|Mm−1 = v̂|Mm−1 and we conclude
with ṽ := v̂. □

We now turn to the two following lemmas, that are concerned with suitable modifica-
tions near the skeleton Mm−1 of maps whose traces on Mm−1 are homotopic.

Lemma 3.5. Let u ∈ W1,m(M, N ) and v ∈ C(M, N ). If trMm−1 u and v|Mm−1 are
homotopic in VMO(Mm−1, N ), then there exists a mapping w ∈ W1,m(M, N ) such that
trMm−1 w = trMm−1 u on Mm−1 and v and w are homotopic in VMO(M, N ).
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The key ingredient in the proof of Lemma 3.5 is the following cylinder insertion
construction.

Lemma 3.6. Let U ∈ W1,p([0, 1] × ∂Bm, N ) and v ∈ W1,p(Bm, N ). If
tr{1}×∂Bm U = tr∂Bm v

and if W : [0, 1] × Bm → N is defined by

W (t, x) :=

v( 2x
1+t) if 2|x| ≤ 1 + t,

U
(

1+t
|x| − 1, x

|x|

)
if 2|x| ≥ 1 + t,

then the map
t ∈ [0, 1] 7→ W (t, ·) ∈ W1,p(Bm, N )

is continuous, for every t ∈ [0, 1],
tr∂Bm W (t, ·) = U(t, ·) ,

and
W (1, ·) = v .

Proof of Lemma 3.6. The proof follows from the continuity in Sobolev spaces of suitable
families of diffeomorphisms. □

Proof of Lemma 3.5. By a classical smoothing argument, we can assume that v ∈
C1(M, N ) ⊆ C(M, N ) ∩ W1,m(M, N ).

On the other hand, by the classical extension theory for Sobolev mappings, there is
some map U ∈ W1,m([0, 1]×Mm−1, N )∩C1((0, 1]×Mm−1, N ) such that tr{0}×Mm−1 U =
trMm−1 u. By the continuity of traces and transitivity of homotopies, U(1, ·) is homotopic
to v|Mm−1 in VMO(M, N ), and thus in C(M, N ) by Proposition 2.2; upon smoothing this
continuous homotopy and then using this smoothened homotopy to modify appropriately
the values of U on [1/2, 1]×Mm−1, we can assume further that trMm−1 U(1, ·) = v|Mm−1 ,
while preserving the fact that U ∈ W1,m([0, 1] × Mm−1, N ).

We conclude by applying Lemma 3.6 to σ × [0, 1] for every m-dimensional simplex σ
of the triangulation Mm thanks to a suitable bi-Lipschitz homeomorphism between the
simplex σ and the ball Bm. □

The last ingredient in the proof of Theorem 3.1 is the following insertion of bubble
lemma.

Lemma 3.7. Let u0, u1 ∈ W1,p(Bm, N ) ∩ C(Bm, N ). If
tr∂Bm u0 = tr∂Bm u1 ,

and if

U(t, x) :=


u0(x) if |x| ≥ t,
u0(t2x/|x|2) if t2 ≤ |x| ≤ t,
u1(x/t2) if |x| ≤ t2,

then
(i) the map t ∈ (0, 1] 7→ U(t, ·) ∈ W1,p(Bm, N ) is continuous,
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(ii) for every t ∈ (0, 1],

{x ∈ Bm | U(t, x) ̸= u0(x)} ⊂ Bt ,

(iii) for every t ∈ (0, 1],
ˆ
Bm

|DU(t, ·)|p =
ˆ
Bm\Bt

|Du0(x)|p
(

1 + t2(m−p)

|x|2(m−p)

)
dx + t2(m−p)

ˆ
Bm

|Du1|p .

Proof. Assertions (i) and (ii) are straightforward. For (iii), one clearly hasˆ
Bm\Bt

|DU(t, ·)|p =
ˆ
Bm\Bt

|Du0|m

and ˆ
Bt2

|DU(t, ·)|p = t2(m−p)
ˆ
Bm

|Du1|p .

Moreover, since the transformation x 7→ t2x/|x|2 is conformal, we haveˆ
Bt\Bt2

|DU(t, ·)|p =
ˆ

Bt\Bt2

|Du0(t2x/|x|2)|p t2p

|x|2p
dx

=
ˆ
Bm\Bt

|Du0(x)|p t2(p−m)

|x|2(p−m) dx .

This concludes the proof of item (iii). □

Proposition 3.8. Let u, v ∈ W1,m(M, N ). If trMm−1 u and trMm−1 v are homotopic in
VMO(Mm−1, N ), then

E1,m
het (u, v) < ∞ .

Proof. Without loss of generality, we can assume that v ∈ C1(M, N ) ⊆ C(M, N ) ∩
W1,m(M, N ). Then, in view of Lemma 3.5, we can assume that trMm−1 u = trMm−1 v.
We then conclude by applying Lemma 3.7 to any m-dimensional simplex σ of the
triangulation M, up to a standard bi-Lipschitz equivalence between such a simplex and
Bm. □

Proof of Theorem 3.1. Assuming that (i) holds, (ii) follows from Proposition 3.3 and the
homotopy extension property. More precisely, by Proposition 2.7 and Proposition 3.3, we
find maps ũ, w̃ ∈ C(M, N ) that are homotopic in VMO(M, N ) to u and v respectively,
and satisfying ũ|Mm−1 = w̃|Mm−1 . In particular, w̃|Mm−1 is homotopic in C(Mm−1, N )
to v|Mm−1 . We conclude by applying the homotopy extension property to find a map
w ∈ C(M, N ), homotopic to ũ and thus to u, and that coincides with v on Mm−1.

If (ii) holds, by a standard approximation argument, we can construct a mapping
w̃ ∈ C1(M, N ) ⊆ C(M, N ) ∩ W1,m(M, N ) such that u and w̃ are homotopic in
W1,m(M, N ) and such that w̃|Mm−1 is homotopic to v|Mm−1 in C(Mm−1, N ), and
thus in VMO(Mm−1, N ). By continuity of the traces, trMm−1 u and trMm−1 w̃ are
homotopic in W1−1/m,m(Mm−1, N ), and thus in VMO(Mm−1), so that (iii) holds.

Conversely, if (iii) holds, then (i) is a consequence of Proposition 3.8 and a standard
approximation argument. □
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4. Improved upper estimate

4.1. Topological disparities. This section is devoted to an estimate on the heterotopic
energy, which in particular implies the upper estimate in Theorem 1.1. We start by
introducing the concept of topological disparity, and collecting some of its basic properties.

Given two mappings u, v ∈ C(Bm, N ) such that u = v on ∂Bm, we define the topological
disparity

[u, v,Bm] ∈ πm(N , u(0))
as the homotopy class of the mapping w : Bm → N defined as

w(x) :=
{

u(4(1 − |x|)x) if |x| ≥ 1/2,
v(2x) if |x| ≤ 1/2,

relatively to ∂Bm. (The definition ensures that w|∂Bm = u(0).)
If ρ is sufficiently small, if we fix a diffeomorphism mapping a to 0 and B̄ρ(a) to Bm,

we can define for u, v ∈ C(M, N ) such that u|∂Bρ(a) = v|∂Bρ(a),

[u, v, Bρ(a)] ∈ πm(N , u(a))
accordingly, and it is a well-defined homotopy class (depending on the orientation of the
diffeomorphism).

We first prove that having zero topological disparity is a sufficient condition for being
homotopic.

Lemma 4.1. Let u, v ∈ C(M, N ). If u = v on M \ Bρ(a) and if
[u, v, Bρ(a)] = 0 in πm(N , u(a)) ,

then u and v are homotopic relatively to M \ Bρ(a).

Proof. Since [u, v, Bρ(a)] = 0, it follows from the definition of the topological disparity
that u and v are homotopic relatively to ∂Bρ(a); since they coincide outside of Bρ(a),
they are homotopic relatively to M \ Bρ(a). □

The converse of Lemma 4.1 fails in general. For example, if we take the projective
space M = RP2n and the sphere N = S2n, if u = v on M \ Bρ(a) and [u, v, Bρ(a)] is
a map of Brouwer degree 2, then we can split this homotopy class into two maps of
Brouwer degree 1 and move one along an orientation reversing curve to show that v is
homotopic to u.

A straightforward property of the disparity energy is that it does not depend on the
choice of a ball outside of which u and v coincide – provided that one makes consistent
orientation choices.

Lemma 4.2. Let u, v ∈ C(M, N ). If ρ < σ and if u = v on B̄σ(a) \ Bρ(a), then
[u, v, Bρ(a)] = [u, v, Bσ(a)] in πm(N , u(a)) ,

provided the orientations on B̄ρ(a) and B̄σ(a) are compatible with the inclusion.

Proof. In view of the inclusion B̄ρ(a) ⊆ B̄σ(a), there is a homotopy between the diffeo-
morphism between Bm and B̄ρ(a) and the one between Bm and B̄σ(a) that can be used
to construct a suitable homotopy. □
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As a converse to Lemma 4.2, we can always work with small balls up to a suitable
homotopy.
Lemma 4.3. Let u, v ∈ C(B̄ρ(a), N ). If u = v on ∂Bρ(a) and if σ < ρ, then there exists
w ∈ C(B̄ρ(a), N ) homotopic to v relatively to ∂Bρ(a) such that w = u in B̄ρ(a) \ Bσ(a)
and

[u, w, Bσ(a)] = [u, v, Bρ(a)] in πm(N , u(a)) ,

provided the orientations on B̄ρ(a) and B̄σ(a) are compatible with the inclusion.
Proof. Choose 0 < σ′ < σ, and define

w(x) =


u(x) if x ∈ B̄ρ(a) \ Bσ(a),
u(λ(|x|)x) if x ∈ B̄σ(a) \ Bσ′(a),
v(ρx/σ′) if x ∈ B̄σ′(a),

where λ : [σ′, σ] → R is a nonincreasing function such that λ(σ′) = ρ/σ′ and λ(σ) = 1;
the map w can readily be checked to satisfy the required properties. □

We now turn to a series of basic but useful properties related to moving, adding, or
merging topological disparities. For this purpose, we recall the definition of the action
of a path on a homotopy class. If f : Bm → N is a continuous map constantly equal
to b on ∂B and ζ : [0, 1] → N is a continuous path such that ζ(1) = b, then the class
ζ∗[f ] ∈ πm(N , ζ(0)) is the homotopy class of the map

Bm ∋ x 7→
{

f(2x) if |x| ≤ 1/2,
ζ(2 − 2|x|) if |x| ≥ 1/2.

This corresponds to adding the path ζ radially around the map f .
Lemma 4.4 (Adding topological disparities). If u, v, w ∈ C(B̄ρ(a), N ), if u = v = w on
∂Bρ(a), if γ ∈ C([0, 1], B̄ρ(a)) with γ(1) = a and γ(0) ∈ ∂Bρ(a), then
(u ◦ γ)∗[u, w, Bρ(a)] = (u ◦ γ)∗[u, v, Bρ(a)] + (v ◦ γ)∗[v, w, Bρ(a)] in πm(N , u(γ(0))) .

In the statement of the above lemma, the role of the assumption that γ(0) ∈ ∂Bρ(a)
is to ensure that the boundary values of the different homotopy classes coincide.

If u, v, w ∈ C(M, N ), the conclusion still holds when u ◦ γ = v ◦ γ on γ−1(M\Bρ(a)).

Proof of Lemma 4.4. This follows from the definition of the sum of homotopy classes
and a homotopy argument. □

Lemma 4.5 (Reciprocal topological disparities). Given u, v ∈ C(B̄ρ(a), N ), if u = v on
∂Bρ(a), and γ ∈ C([0, 1], B̄ρ(a)) with γ(1) = a and γ(0) ∈ ∂Bρ(a), then

(u ◦ γ)∗[u, v, Bρ(a)] = −(v ◦ γ)∗[v, u, Bρ(a)] in πm(N , u(γ(0))) .
Proof. Apply Lemma 4.4 above with w = u. □

Lemma 4.6 (Moving topological disparities). Given γ ∈ C([0, 1], M) and u, v ∈
C(M, N ), if u = v on M \ Bρ(γ(0)), then there exists w ∈ C(M, N ) such that w = u
on M \ Bρ(γ(1)), w is homotopic to v, and

[u, v, Bρ(γ(0))] = (u ◦ γ)∗[u, w, Bρ(γ(1))] in πm(N , u(γ(0))) ,
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where the orientation of B̄ρ(γ(0)) is transported from B̄ρ(γ(1)) through γ.

In the above lemma, if γ is smooth, then the transport of the orientation is defined via
the parallel transport of a basis along γ. The definition is then extended to continuous
curves by a standard approximation procedure.

In the particular case where M is not orientable, γ(0) = γ(1) = a, and γ reverses the
orientation, one should understand that opposite orientations are taken on both sides,
and thus

[u, v, Bρ(a)] = −[u, w, Bρ(a)] in πm(N , u(a)) .

This sort of transport can be observed (without the orientation part) in [34]. In [2, Ch.
4], a similar work is done with the universal coverings of M and N : in other words, one
writes γ = πM ◦ γ̃, and then the orientation is managed through the orientation induced
from γ̃(0), since the universal covering space M̃ is simply connected and thus orientable.

Proof of Lemma 4.6. By parallel transport and properties of the exponential map, there
is a mapping K ∈ C([0, 1] × Bm, M) such that K(·, 0) = γ and for every t ∈ [0, 1], K(t, ·)
is a homeomorphism to B̄ρ(γ(t)). By the homotopy extension property, there exists
a map W ∈ C([0, 1] × Bm, N ) such that W (0, ·) = v ◦ K(0, ·) and for every t ∈ [0, 1]
W (t, ·)|∂Bm = u ◦ K(t, ·)|∂Bm . We define now

V (t, x) =
{

W (t, K(t, ·)−1(x)) if x ∈ Bρ(γ(t)),
u(x) otherwise.

By construction, we have V (0, ·) = v and w := V (1, ·) satisfies the conclusion. □

Lemma 4.7 (Homotopy variations of disparities). Let u0, v0 ∈ C(M, N ). If u0 = v0 in
M \

⋃I
i=1 Bρ(ai) and if u1 ∈ C(M, N ) is homotopic to u0, then there exist v1 ∈ C(M, N )

homotopic to v0 such that u1 = v1 in M \
⋃I

i=1 Bρ(ai), and mappings ζi ∈ C([0, 1], N )
such that ζi(0) = u0(ai), ζi(1) = u1(ai), and

[u0, v0, Bρ(ai)] = (ζi)∗[u1, v1, Bρ(ai)] in πm(N , u0(ai)) .

Proof. By assumption, there is some U ∈ C([0, 1] × M, N ) such that U(0, ·) = u0 and
U(1, ·) = u1. Since U(0, ·) = v0 in M \

⋃I
i=1 Bρ(ai), there exists a map V ∈ C(M, N )

such that V = U on [0, 1] × M \
⋃I

i=1 Bρ(ai) and V (0, ·) = v0. We let then v1 := V (1, ·)
and ζi := U(·, ai). □

Lemma 4.8 (Merging topological disparities). Given γi ∈ C([0, 1], M), we set γi(0) = a0
and γi(1) = ai. Given u, v ∈ C(M, N ), if u = v on M \

⋃I
i=1 Bρ(ai), and if the balls

(Bρ(ai))1≤i≤I are disjoint, then there exists w ∈ C(M, N ) such that w = u on M\Bρ(a),
w is homotopic to v, and

[u, w, Bρ(a0)] =
I∑

i=1
(u ◦ γi)∗[u, v, Bρ(ai)] in πm(N , u(a0)) ,

where the orientation of B̄ρ(ai) corresponds to the one transported from B̄ρ(a0) through
γi.
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Proof. Thanks to Lemma 4.6, we can assume that Bρ(a0) is also disjoint from the balls
Bρ(a1), . . . , Bρ(aI). Since m ≥ 2, we can assume, up to a suitable homotopy, that for
every i, j ∈ {1, . . . , I} with i < j and for every t ∈ [0, 1],

γi(t) ̸∈ Bρ(aj) . (4.1)
We first define w0 = v. For every i ∈ {1, . . . , I}, given wi−1 ∈ C(M, N ) homotopic to
v such that wi−1 = u on M \ (Bρ(a0) ∪

⋃I
j=i Bρ(aj)) and wi−1 = v on

⋃I
j=i Bρ(aj), we

define

ui :=
{

wi−1 in M \ Bρ(ai),
u in Bρ(ai),

(4.2)

so that ui = u on M \ (Bρ(a0) ∪
⋃I

j=i+1 Bρ(aj)) and ui = v on
⋃I

j=i+1 Bρ(ai). We get
from Lemma 4.6 applied to the reverse path to γi a mapping wi ∈ C(M, N ) such that (i)
wi = ui on M \ Bρ(a0) and thus wi = u on M \ (Bρ(a) ∪

⋃I
j=i+1 Bρ(aj)) and wi = v on⋃I

j=i+1 Bρ(aj), (ii) wi is homotopic to wi−1 and thus to v, and (iii)
[ui, wi, Bρ(a0)] = (ui ◦ γi)∗[ui, wi−1, Bρ(ai)] in πm(N , ui(ai)) . (4.3)

Since u ◦ γi = ui ◦ γi in γ−1
i (M \ Bρ(a)) in view of (4.1), applying Lemma 4.4, we have

by (4.2) and (4.3)
(u ◦ γi)−1

∗ [u, wi, Bρ(a0)] = (u ◦ γi)−1
∗ [u, ui, Bρ(a0)] + (ui ◦ γi)−1

∗ [ui, wi, Bρ(a0)]
= (u ◦ γi)−1

∗ [u, ui, Bρ(a0)] + [ui, wi−1, Bρ(ai)]
= (u ◦ γi)−1

∗ [u, wi−1, Bρ(a0)] + [u, v, Bρ(ai)] ,
and thus

[u, wi, Bρ(a0)] = [u, wi−1, Bρ(a0)] + (u ◦ γi)∗[u, v, Bρ(ai)] .
We conclude then by letting w := wI and taking the sum over i ∈ {1, . . . , I}. □

4.2. The topological energy. Our next aim is to define the energy associated with
topological disparities. For this purpose, we first define the energy of a homotopy class.
We define, for σ ∈ πm(N , b), the topological energy

E1,m
top (σ) := inf

{ˆ
Bm

|Df |m
∣∣∣∣ f ∈ W1,m(Bm, N ) and f ∈ σ

}
. (4.4)

When N = Sm, the topological energy is related to deg : πm(Sm, b) → Z, defined as
the Brouwer degree, through an exact formula:

Proposition 4.9. For every σ ∈ πm(Sm, b),

E1,m
top (σ) = mm/2|Sm||deg σ| .

This formula is well-known, but we provide an argument for the sake of completeness.
We also refer to [27, §8] for the case where m = 2, and [32, Proposition 7.1] for a closely
related result and argument in any dimension.

Proof of Proposition 4.9. Let f ∈ W1,m(Bm, Sm) be any map such that f ∈ σ. From the
arithmetico-geometric inequality, we deduce the pointwise estimate

J f ≤ |Df |m

mm/2 .
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On the other hand, from the Kronecker integral formula for the degree (see for example
[5, Remark 0.7] or [17]), it holds thatˆ

Bm

J f ≥ |Sm||deg σ| .

Taking the infimum over all such f ∈ σ, we deduce the lower bound

E1,m
top (σ) ≥ mm/2 |Sm| |deg σ| . (4.5)

To prove the upper bound, we start with the case where deg σ = 1. In this case, given
ε > 0 and letting f : Bm → Sm be a an almost conformal equivalence between Bm and
Sm – this can be achieved by the means of a truncation of a rescaled stereographical
projection from Rm to Sm – we obtainˆ

Bm

|Df |m = mm/2|Sm| + ε ,

showing that (4.5) is actually an equality.
The case of an arbitrary degree then follows via (4.6) below, the idea being to construct

almost minimizing competitors by patching together scaled copies of the above map. □

As similar formula holds for the projective plane.

Proposition 4.10. For every σ ∈ πm(RPm, b),

E1,m
top (σ) = mm/2 2|RPm| |deg σ| ,

where deg denotes the degree as a map to RPm, defined as the degree of the lifting when
m is odd and its absolute value otherwise [33].

The proof of Proposition 4.10 follows the same lines as the proof of Proposition 4.9. The
extra factor 2 comes from the use of a lifting f̃ : Bm → Sm of a map f : Bm → RPm, as each
point in RPm is covered twice by the covering map Sm → RPm; see [33, Proposition 3.8].

As we already mentioned in the introduction, there is a more general phenomenon
connecting the topological energy to the minimal area needed to realize the corresponding
homotopy class.

Proposition 4.11. For every σ ∈ πm(N , b),

E1,m
top (σ) ≥ mm/2 Area σ ,

with equality if m = 2, where Area σ denotes the minimal area to realize the homotopy
class σ by a continuous map, taking into account the multiplicity.

In the case where N is of dimension m and σ also corresponds to a homology cycle JσK
– which will be the case whenever the Hurewicz homomorphism is an isomorphism – then
Area σ corresponds exactly to the area of the unique simplicial complex in the class of
JσK, computed by summing the area of all the simplexes that it contains, counted with
their multiplicity.

Proof of Proposition 4.11. The proof of the lower bound follows from the exact same
argument as above, combining the arithmetico-geometric inequality with the area formula.
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To deduce the upper bound when m = 2, for every ε > 0, we apply Morrey’s ε-
conformality theorem [31] (see also [19]) to obtain a map f ∈ σ such thatˆ

Bm

|Df |2 ≤ 2 Area σ + ε .

The conclusion follows by letting ε → 0. □

In Proposition 4.9 and Proposition 4.10, the topological energy grows linearly with
respect to the relevant degree. However, such a rate of growth is not universal: there are
situations where the growth is governed by a power law with exponent less than 1. The
model case is the Hopf degree, which was first studied by Rivière [39] (see also [21,44]).
We note however that the energy growth is always sublinear; see (4.6) below. In our
framework, we have the following two-sided estimate for the topological energy with
respect to the Hopf degree.

Proposition 4.12. For every σ ∈ π4n−1(S2n, b),

c|degH σ|1− 1
4n ≤ E1,4n−1

top (σ) ≤ C|degH σ|1− 1
4n ,

where degH is the Hopf invariant.

Proof. When n = 1, this follows from Rivière’s sharp estimate on the Hopf invariant [39];
when n ≥ 2, Rivière’s argument adapts straightforwardly to get the upper bound and a
lower bound can be obtained thanks to Whitehead products [44]. □

A similar phenomenon occurs for more involved homotopical quantities, connected to
rational homotopy theory; we refer the reader to [25,36] for more details.

After this review of model computations of E1,m
top , and before we move to the definition

of the disparity energy, we collect some fundamental properties of the topological energy.

Proposition 4.13 (Norm properties of the topological energy). The quantity E1,m
top has

the following properties:
(i) For every σ ∈ πm(N , b), one has

E1,m
top (σ) ≥ 0 .

(ii) There exists η ∈ (0, ∞) such that if σ ∈ πm(N , b) and

E1,m
top (σ) < η ,

then σ = 0.
(iii) For every σ ∈ πm(N , b), one has

E1,m
top (−σ) = E1,m

top (σ) .

(iv) For every σ, τ ∈ πm(N , b), one has

E1,m
top (σ + τ) ≤ E1,m

top (σ) + E1,m
top (τ) .

(v) If ζ ∈ C([0, 1], N ) and σ ∈ πm(N , ζ(1)), then

E1,m
top (ζ∗σ) = E1,m

top (σ) .
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(vi) The set
{E1,m

top (σ) | σ ∈ πm(N , b)}
is discrete.

In other words, E1,m
top is a norm on the group πm(N , b) for which the isomorphisms

induced by the action of the fundamental groupoid Π1(N ) are isometries.
It follows from Proposition 4.13 (iii) and (iv) that

E1,m
top (kσ) ≤ |k|E1,m

top (σ) . (4.6)

An important phenomenon to mention is that, in general, the reverse inequality to (4.6)
does not hold; this is the case for example when m = 4n − 1 and N = S2n, one has
E1,4n−1

top (kσ) ≃ |k|1−1/(4n) (Proposition 4.12). The question of determining the optimal
growth of E1,m

top (kσ) with respect to k (which is |k| for the Brouwer degree by virtue
of Proposition 4.9 and |k|1−1/(4n) for the Hopf degree according to Proposition 4.12) is a
challenging problem, which remains open in full generality; see for instance [25] and the
references therein for more details and other partial results.

In particular, (iii) implies that the quantity

E1,m
top ([u, v, Bρ(a)])

is well-defined and (ii) that it vanishes if and only if u and v are homotopic relatively to
∂Bρ(a). It follows from Lemma 4.4 and Proposition 4.13 (iv) and (v) that

E1,m
top ([u, w, Bρ(a)]) ≤ E1,m

top ([u, v, Bρ(a)]) + E1,m
top ([v, w, Bρ(a)]) .

The assertion (v) implies that

E1,m
top

(
(u ◦ γ)∗[u, v, Bρ(γ(1))]

)
= E1,m

top
(
[u, v, Bρ(γ(0))]

)
.

Proof of Proposition 4.13. The nonnegativity in (i) follows from the definition.
By Proposition 2.4 and the Poincaré inequality, there exists η ∈ (0, ∞) such that, if

f ∈ W1,m(Bm, M), tr∂Bm f = b, andˆ
Bm

|Df |m < η ,

then f is homotopic to constant. Thus, if f ∈ σ, then σ = 0, and (ii) follows.
For (iii), if Φ: Bm → Bm is an orientation reversing isometry, given f ∈ W1,m(Bm, N )

and f ∈ σ, we have f ◦ Φ ∈ −σ andˆ
Bm

|D(f ◦ Φ)|m =
ˆ
Bm

|Df |m ,

so that E1,m
top (−σ) ≤ E1,m

top (σ).
For (iv), assume that f, g ∈ W1,m(Bm, N ) and that f ∈ σ and g ∈ τ . Taking c, d ∈ Bm

and δ ∈ (0, 1) such that Bδ(c) and Bδ(d) are disjoint subsets of Bm and defining

h(x) :=


f(x−c

δ ) if x ∈ Bδ(c),
g(x−d

δ ) if x ∈ Bδ(d),
b otherwise,
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we have h ∈ σ + τ and ˆ
Bm

|Dh|m =
ˆ
Bm

|Df |m +
ˆ
Bm

|Dg|m .

The conclusion then follows from (4.4).
In order to prove (v), without loss of generality we can assume that ζ ∈ C1([0, 1], N ).

Given f ∈ W1,m(Bm, N ) such that f ∈ σ, we define for every ε ∈ (0, ∞)

fε =
{

ζ(2 − 2|x|ε) if |x|ε ≥ 1/2,
f(21/εx) otherwise.

We compute then
ˆ
Bm

|Dfε|m =
ˆ
Bm

|Df |m +
ˆ

|x|ε≥1/2

εm|ζ ′(2 − 2|x|ε)|m

|x|m(1−ε) dx

≤
ˆ
Bm

|Df |m + C1εm−1 ,

proving thus that
E1,m

top (ζ∗σ) ≤ E1,m
top (σ) .

Considering the reverse path ζ̌ defined by ζ̌(t) = ζ(1− t), we get, by homotopy invariance,

E1,m
top (σ) = E1,m

top (ζ̌∗ζ∗σ) ≤ E1,m
top (ζ∗σ) ,

and the conclusion follows.
Finally, (vi) follows from the decomposition into a bounded number of maps taken in

a finite set that are glued together through the action of Π1(N ) [18, th. 4; 46, lem. 5.2;
49] and from (v). □

Proposition 4.14. Let u, v ∈ W1,m(Bm, N ) ∩ C(Bm, N ). If u = v on ∂Bm, then

E1,m
top ([u, v,Bm]) ≤

ˆ
Bm

|Du|m +
ˆ
Bm

|Dv|m .

Proof. By an approximation argument, we can assume that u = b on B̄ρ. We define then

w(x) :=
{

v(x
ρ ) if |x| ≤ ρ,

u( ρx
|x|2 ) if |x| ≥ ρ.

Since v = u on ∂Bm, we have w ∈ W1,m(Bm, N ) ∩ C(Bm, N ), while it is straightforward
to observe that w ∈ [u, v,Bm]. By our additional assumption on u, w|∂Bm = b. Since the
change of variable in the definition of w is conformal, we have

ˆ
Bm

|Dw|m =
ˆ
Bm

|Du|m +
ˆ
Bm

|Dv|m ,

and the conclusion follows. □
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4.3. The disparity energy. We are finally in position to define the energy associated
with topological disparities. We define the disparity energy

E1,m
disp(u, v) := inf

{
E1,m

top ([u, w, Bρ(a)])
∣∣∣ w ∈ C(M, N ) homotopic to v

and u = w in M \ Bρ(a)
}

. (4.7)

The infimum above runs over all balls Bρ(a) ⊂ M. However, Lemma 4.6 and Proposi-
tion 4.13 (v) imply that we could as well have fixed the point a, and that the quantity
E1,m

disp(u, v) would not depend on this choice. By Proposition 4.13 (vi), the infimum in
(4.7) is actually a minimum.

Proposition 4.15. The function E1,m
disp is a distance on homotopy classes:

(i) For every u, v ∈ C(M, N ),
E1,m

disp(u, v) ≥ 0 .
(ii) There exists η ∈ (0, ∞) such that if u, v ∈ C(M, N ) and

E1,m
disp(u, v) ≤ η ,

then u and v are homotopic.
(iii) For every u, v ∈ C(M, N ),

E1,m
disp(u, v) = E1,m

disp(v, u) .
(iv) For every u, v, w ∈ C(M, N ), we have

E1,m
disp(u, w) ≤ E1,m

disp(u, v) + E1,m
disp(v, w) .

Proof. Given u, v ∈ C(M, N ), the quantity E1,m
disp(u, v) is clearly nonnegative, so that (i)

holds.
If moreover E1,m

disp(u, v) < η, then there exists w ∈ C(M, N ) such that u = w in
M \ Bρ(a), v and w are homotopic, and

E1,m
top ([u, w, Bρ(a)]) < η .

By Proposition 4.13 (ii) and Lemma 4.1, u and w are homotopic relatively to M \ Bρ(a),
proving (ii).

Let u, v ∈ C(M, N ). Assuming that ṽ ∈ C(M, N ) is homotopic to v and ṽ = u
in M \ Bρ(a), we let ũ ∈ C(M, N ) and ζ ∈ C([0, 1], N ) be given by Lemma 4.7. We
compute, with the aid of Proposition 4.13 (v),

E1,m
top ([ṽ, u, Bρ(a)]) = E1,m

top (ζ∗[v, ũ, Bρ(a)])

= E1,m
top ([v, ũ, Bρ(a)]) .

To conclude, we let γ ∈ C([0, 1], M) be such that γ(1) = a and γ(0) ̸∈ Bρ(a), and we rely
on Proposition 4.13 (v) and Lemma 4.5 to obtain

E1,m
top ([ṽ, u, Bρ(a)]) = E1,m

top ((ṽ ◦ γ)∗[ṽ, u, Bρ(a)])

= E1,m
top (−(u ◦ γ)∗[u, ṽ, Bρ(a)]) = E1,m

top ([u, ṽ, Bρ(a)]) ,
so that (iii) follows using Proposition 4.13 (iii).
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If u, v, w ∈ C(M, N ), assume that ṽ ∈ C(M, N ) is homotopic to v and ṽ = u on
M \ Bρ(a), and that w̃ ∈ C(M, N ) is homotopic to w and w̃ = v on M \ Bρ(a). By
Lemma 4.7, there exist ˜̃w ∈ C(M, N ) and ζ ∈ C([0, 1], N ) such that ˜̃w is homotopic to
w̃ and w, ˜̃w = ṽ = u in M \ Bρ(a), and

[v, w̃, Bρ(a)] = ζ∗[ṽ, ˜̃w, Bρ(a)] in πm(N , v(a)) .

Fixing γ ∈ C([0, 1], M) such that γ(1) = a and γ(0) ̸∈ Bρ(a), by Proposition 4.13 (v),
Lemma 4.4, and Proposition 4.13 (iv), we have

E1,m
top ([u, ˜̃w, Bρ(a)]) = E1,m

top ((u ◦ γ)∗[u, ˜̃w, Bρ(a)])

= E1,m
top ((u ◦ γ)∗[u, ṽ, Bρ(a)] + (ṽ ◦ γ)∗[ṽ, ˜̃w, Bρ(a)])

≤ E1,m
top ((u ◦ γ)∗[u, ṽ, Bρ(a)]) + E1,m

top ((ṽ ◦ γ)∗[ṽ, ˜̃w, Bρ(a)])

= E1,m
top ((u ◦ γ)∗[u, ṽ, Bρ(a)]) + E1,m

top (ζ∗[ṽ, ˜̃w, Bρ(a)])

= E1,m
top ([u, ṽ, Bρ(a)]) + E1,m

top ([v, w̃, Bρ(a)]) ,

so that (iv) follows. □

Another important property of the disparity energy is its continuity with respect to
the strong W1,m convergence.

Proposition 4.16. If u ∈ W1,m(M, N ) ∩ C(M, N ), v ∈ C(M, N ), and (uj)j∈N is a
sequence in W1,m(M, N ) ∩ C(M, N ) converging strongly to u in W1,m, then

lim
j→∞

E1,m
disp(uj , v) = E1,m

disp(u, v) .

Proof. This follows from Proposition 2.4 and Proposition 4.15 (iii). □

At the heart of our definition of the disparity energy is the following problem: given
two maps u and v, find the optimal way of modifying u inside one ball to obtain a
map homotopic to v, in order to minimize the energy of the resulting map. The next
proposition essentially encodes the fact that one cannot gain by allowing instead to
modify u on several balls.

Proposition 4.17. If u = v on M \
⋃I

i=1 Bρ(ai) with Bρ(a1), . . . , Bρ(aI) disjoint, then

E1,m
disp(u, v) ≤

I∑
i=1

E1,m
top

(
[u, v, Bρ(ai)]

)
.

The idea of the proof is to use the merging tool provided by Lemma 4.8 to gather all
the bubbles contained in the balls Bρ(ai) inside a common ball Bρ(a).

Proof of Proposition 4.17. Choosing γi ∈ C([0, 1], M) such that γi(0) = a and γi(1) = ai,
with Bρ(a) ∩

⋃I
i=1 Bρ(ai) = ∅, and applying Lemma 4.8, we get a mapping w ∈ C(M, N )

such that u = w in M \ Bρ(a), w is homotopic to v, and

[u, w, Bρ(a)] =
I∑

i=1
(u ◦ γi)∗[u, v, Bρ(ai)] in πm(N , u(a)) .
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Hence, by Proposition 4.13 (iv) and (v), we get

E1,m
top ([u, w, Bρ(a)]) ≤

I∑
i=1

E1,m
top ((u ◦ γi)∗[u, v, Bρ(ai)])

=
I∑

i=1
E1,m

top ([u, v, Bρ(ai)]) ,

and the conclusion follows. □

At the core of the proof of Proposition 4.17 lies the estimate

E1,m
disp(u, v) ≤ E1,m

top

( I∑
i=1

(u ◦ γi)∗[u, v, Bρ(ai)]
)

.

When π1(N ) ≃ {0}, then the quantity on the right-hand side is independent on the
choice of the paths γ1, . . . , γk.

In general however, it depends on γ1, . . . , γk. For example, if we take the projective
space M = RP2n and the sphere N = S2n, if u = v on M \

⋃2
i=1 Bρ(ai) and [u, v, Bρ(ai)]

is a map of Brouwer degree di, then depending on the way γ1 and γ2 transport the
orientation, either (u ◦ γ1)∗[u, v, Bρ(a1)]+(u ◦ γ2)∗[u, v, Bρ(a2)] will have degree ±d1 ±d2,
leading to different values of the energy.

Even when M is orientable, a non-trivial action of π1(M) can also create such
phenomena. Indeed, if M = Sm−1 × S1, if we take u, v such that ζ = u ◦ γ̄ is nontrivial
for γ̄ a loop along S1, we see that we have to consider (at least) all the quantities

E1,m
disp(u, v) ≤ E1,m

top

( I∑
i=1

(u ◦ γi)∗ζki
∗ [u, v, Bρ(ai)]

)
,

for ki ∈ Z, that have no a priori reason of being distinct.
The process of changing γi only revolves around mappings that are homotopic to v

relatively to Mm−2 (we can assume that the paths and the balls never intersect Mm−2);
it turns out that maps can be freely homotopic without being relatively homotopic.

Proposition 4.18. Let n ∈ N \ {0}.
(i) If n is odd, if f, g ∈ C(RPn,RPn) are freely homotopic, and if f(a) = g(a), then

f and g are homotopic relatively to {a}.
(ii) If n is even and a ∈ RPn−1 ⊆ RPn, then there exist f, g ∈ C(RPn,RPn) such that

f = g on RPn−1 and f and g are freely homotopic, but f and g are not homotopic
relatively to {a}.

As a consequence of Proposition 4.18, if N = RPn with n ∈ N \ {0} even and
M = RPn × M′′ with dim M′′ = m − n, then there are maps f, g ∈ C(M, N ) such
that f and g are freely homotopic, f |Mm−1 = g|Mm−1 , but f and g are not homotopic
relatively to Mm−n. Indeed, the homotopy extension property shows that the maps in
Proposition 4.18 can be taken to be equal outside an arbitrarily small ball of RPn so that
they coincide of the (n − 1)-component of its triangulation.



HETEROTOPIC ENERGY FOR SOBOLEV MAPPINGS 26

Proof of Proposition 4.18. We let π : Sn → RPn be the universal covering of the projective
space RPn by Sn. Under the embedding as rank-one projections RPn ⊆ R(n+1)×(n+1), we
have π(x) = x ⊗ x.

When n is even, we define f := idRPn . Taking g̃(x) := (x′, −x′′) for (x′, x′′) ∈ Sn ⊆
R2 × Rn−1, we set, since g̃(−x) = −g̃(x),

g(π(x)) = π(g̃(x)) ,

and we fix a = π(ã) with ã = (1, 0, . . . , 0). Setting for t ∈ [0, 1] and x ∈ Sn

K̃(t, x) = (x1 cos(πt) − x2 sin(πt), x1 sin(πt) + x2 cos(πt), x′′)

and, since K̃(t, −x) = −K̃(t, x),

K(t, π(x)) = π(K̃(t, (x))) ,

we have K(0, ·) = f and K(1, ·) = g, so that f and g are freely homotopic. We assume
now that there is some H ∈ C([0, 1] × RPn,RPn) such that H(·, a) = a, H(0, ·) = f , and
H(1, ·) = g. By the classical theory of lifting, since Sn is simply connected for n ≥ 2,
there exists H̃ ∈ C([0, 1] × Sn,Sn) such that for every (t, x) ∈ [0, 1] × Sn,

π(H̃(t, x)) = H(t, π(x))

and H̃(·, a) = ã. It follows then that H̃(0, ·) = idSn and H̃(1, ·) = g̃. Since deg(idSn) = 1
and deg(g̃) = (−1)n−1 = −1, this cannot be the case.

If n = 2ℓ + 1 is odd, assume that f = H(0, ·) and g = H(1, ·) for some H ∈
C([0, 1] × RPn,RPn). If H(·, a) is homotopic to a constant, then an application of the
homotopy extension property gives a homotopy relative to a. Otherwise, one can note
that if we define G̃ ∈ C([0, 1] × Sn, Sn) for x = (x′, x′′) ∈ Sn ⊆ Rℓ+1 × Rℓ+1 by

G̃(t, x) = (x′ cos(πt) − x′′ sin(πt), x′ sin(πt) + x′′ cos(πt)) ,

and then, since G̃(t, −x) = −G̃(t, x), G ∈ C([0, 1] × RPn,RPn) for every x ∈ Sn by

G(t, π(x)) = π(G̃(t, (x))) ,

we see that G(0, ·) = G(1, ·) = idRPn while for every x ∈ RPn, G(·, x) is a generator of
π1(RPn). Hence, F (t, x) := G(t, f(x)) defines a homotopy between f and itself such that
the homotopy class of F (·, a) = G(·, f(a)) is a generator of π1(RPn) (and the unique
nontrivial element when n ≥ 2). By combining suitable homotopies, this brings us back
to the case where H(·, a) is homotopic to a constant. □

We now have at our disposal all the notions that are required to state and prove the
upper bound on the heterotopic energy as stated in Theorem 1.1.

Proposition 4.19. If u ∈ W1,m(M, N ) ∩ C(M, N ) and v ∈ C(M, N ), then

E1,m
het (u, v) ≤

ˆ
M

|Du|m + E1,m
disp(u, v) .

Our main tool for the proof of Proposition 4.19 is the following opening lemma (see
[9, Lemma 2.1]).
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Lemma 4.20. We define

ur(x) :=
{

u(x − r x
|x|) if |x| ≥ r ,

u(0) if |x| ≤ r .

If ˆ
Bm

|Du(x)|m

|x|m−1 dx < ∞ ,

then

lim
r→0

ˆ
Bm

|Dur|m =
ˆ
Bm

|Du|m .

Proof. Setting for r ∈ (0, 1) and x ∈ Bm, Ψr(x) := x+rx/|x|, we have Ψ−1(x) = x−rx/|x|.
By the change of variable formula, we have
ˆ
Bm\Br

|D(u ◦ Ψ−1
r )|m ≤

ˆ
Bm

|Du|m|(DΨr)−1|mJ Ψr ≤
ˆ
Bm

|Du(x)|m
(

1 + r

|x|

)m−1
dx ,

and the conclusion follows. □

Proof of Proposition 4.19. We first assume that u ∈ C1(M, N ). Given ε > 0, we fix
a ∈ M, ρ ∈ (0, ∞), and w ∈ C(M, N ) such that w is homotopic to v, w = u in M\Bρ(a),
and

E1,m
top ([u, w, Bρ(a)]) ≤ E1,m

disp(u, v) + ε .

By Lemma 4.20, there exists uε such that uε is homotopic to u relatively to M\Bρ(a)∪{a}
and

lim
ε→0

ˆ
M

|Duε|m ≤
ˆ

M
|Du|m .

By the homotopy properties, we have

[uε, w, Bρ(a)] = [u, w, Bρ(a)] in πm(N , u(a)) .

Inserting an element of [uε, w, Bρ(a)] minimising for (4.4), we get

E1,m
het (u, v) ≤

ˆ
M

|Du|m + E1,m
disp(u, v) + ε .

Since ε > 0 was arbitrary, the conclusion follows.
In the general case, if (uj)j∈N is a sequence in C1(M, N ) which converges to u in

W1,m(M, N ), we have by Proposition 2.9 and Proposition 4.16

E1,m
het (u, v) ≤ lim inf

j→∞
E1,m

het (uj , v)

≤ lim inf
j→∞

(ˆ
M

|Duj |m + E1,m
disp(uj , v)

)
=
ˆ

M
|Du|m + E1,m

disp(u, v) ,

which proves our claim. □
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5. Bubbling

The core of this section is the following bubbling result, companion to Theorem 1.5
as stated in the introduction, and which will be instrumental in the proof of the lower
bound on the heterotopic energy.

Theorem 5.1. Assume that v ∈ C(M, N ). If
(a) for every j ∈ N, vj ∈ W1,m(M, N ) is homotopic to v in VMO(M, N ),
(b) vj → u in L1(M, N ),
(c) there exists a Radon measure µ on M such that for every φ ∈ C(M,R),

lim
j→∞

ˆ
M

|Dvj |mφ =
ˆ

M
φ dµ ,

then there exist points a1, . . . , aI ∈ M such that, for every ρ ∈ (0, ∞) sufficiently small,
there exists a map w ∈ C(M, N ) homotopic to u such that w = v in M\

⋃I
i=1 Bρ(ai) and

µ ≥ |Du|m +
I∑

i=1
E1,m

top ([w, v, Bρ(ai)]) δai . (5.1)

In other words, (5.1) states that if φ ∈ C(M, [0, ∞)), then

lim
j→∞

ˆ
M

|Dvj |mφ ≥
ˆ

M
|Du|mφ +

I∑
i=1

E1,m
top ([w, v, Bρ(ai)]) φ(ai) .

We draw the attention of the reader to the fact that the relationships of the map
w with the maps u and v are swapped between Theorem 1.5 in the introduction and
Theorem 5.1 above. The statement in Theorem 1.5 is somewhat more natural regarding
the definition of the heterotopic energy, but as the map w provided by the statement
is continuous, so needs to be as well the map with which it coincides outside of balls.
But, while it is not a loss of generality to assume v to be continuous, assuming u to be
continuous would be quite a strong restriction to the general framework of low regularity
maps that is studied in the body of this text.

As we already explained in the introduction, bubbling statements such as the above
are ubiquitous in the study of weak convergence phenomena for Sobolev mappings. The
main contribution here is to state a very precise and general result, valid for any weakly
converging sequence and relating precisely the limiting measure to the topological defect
between the converging sequence and the limiting map, and to provide a complete proof
of it.

In view of Lemma 4.1, we can assume that [w, v, Bρ(ai)] ̸= 0; one has then by
Proposition 4.13 (ii) a bound on the number of points where the bubbling phenomenon
occurs, given by

I ≤ µ(M)
η

= 1
η

lim
j→∞

ˆ
M

|Dvj |m .

Roughly speaking, the key idea behind the proof of Theorem 5.1 is to construct the
desired map w by removing from vj , for j sufficiently large, the bubbles where the energy
concentration occurs.
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A first tool for the proof of Theorem 5.1 is the following criterion for homotopies (see
for example [22, Proof of Lemma 4.4]), which we apply to ensure that the map w that
we construct is indeed homotopic to u.

Proposition 5.2. There exists η ∈ (0, ∞) such that, if ρ ∈ (0, ∞) is sufficiently small,
and if u, v ∈ C(M, N ) ∩ W1,m(M, N ) satisfy

(a) for every a ∈ M, ˆ
Bρ(a)

|Du|m + |Dv|m ≤ η , (5.2)

(b) for every a ∈ M,  
Bρ(a)

d(u, v)m ≤ η ,

then u and v are homotopic.

Proof of Proposition 5.2. The argument follows the classical strategy of proof that goes
back to Schoen and Uhlenbeck [45] (see also [13]), and we therefore only give a sketch of
it. Defining ur, vr : M → Rν for r ∈ (0, ∞) sufficiently small by, for x ∈ M,

ur(x) :=
 

Br(x)
u and vr(x) :=

 
Br(x)

v ,

one observes that ur and vr take values in a small tubular neighbourhood of the target
N when r ≤ ρ thanks to (a). Moreover, the condition (b) ensures that uρ and vρ are
uniformly close. This shows that u and v are homotopic. □

We also use the following extension property for Sobolev mappings, in order to remove
the bubbles formed by the weak convergence of the maps vj .

Lemma 5.3. There exists η ∈ (0, ∞) such that if u0 ∈ W1,m(∂Bm, N ) satisfiesˆ
∂Bm

|Du0|m ≤ η ,

then there exists u ∈ W1,m(Bm, N ) ∩ C(Bm, N ) such that tr∂Bm u = u0 andˆ
Bm

|Du|m ≤ C

ˆ
∂Bm

|Du0|m .

By a suitable scaling and exponential map construction, on every ball Bρ(a) ⊂ M of
sufficiently small radius, Lemma 5.3 shows that if

ρ

ˆ
∂Bρ(a)

|Du0|m ≤ η ,

then there exists u ∈ W1,m(Bρ(a), N ) ∩ C(Bρ(a), N ) such that tr∂Bρ(a) u = u0 and
ˆ

Bρ(a)
|Du|m ≤ Cρ

ˆ
∂Bρ(a)

|Du0|m ,

with a constant C > 0 independent of ρ.
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Proof of Lemma 5.3. One first takes v : Bm → Rν to be an extension of u0 by averages
(for example a harmonic or hyperharmonic extension) and then applies a nearest-point
projection. For instance, following [38, §3], one can set

v(x) := (1 − |x|2)m−1
 
Sm−1

u0(y)
|y − x|2m−2 dy ;

and show that

dist(v(x), N ) ≤ C1
(ˆ

Sm−1
|Du0|m−1

) 1
m−1 ≤ C2

(ˆ
Sm−1

|Du0|m
) 1

m .

One gets then the conclusion when η ∈ (0, ∞) is sufficiently small. □

We rely on the following mixed Poincaré inequality to estimate the distance in Lm

between the map w that we construct and the map u on the balls where we perform the
modification, in order to check that the assumptions of Proposition 5.2 are satisfied.

Lemma 5.4 (Mixed Poincaré inequality). If p ∈ [1, ∞), then for every u ∈ W1,p(Bm,Rν),
if tr∂Bm u = u|∂Bm, one has¨

Bm×∂Bm

|u(x) − u(y)|p dy dx ≤ C

ˆ
Bm

|Du|p .

By a straightforward scaling and local chart argument, on every ball Bρ(a) ⊂ M of
sufficiently small radius, Lemma 5.4 implies that 

Bρ(a)

 
∂Bρ(a)

|u(x) − u(y)|p dy dx ≤ Crp−m

ˆ
Bρ(a)

|Du|p ,

with a constant C > 0 independent of ρ.

Proof of Lemma 5.4. For a.e. y ∈ ∂Bm, combining the mean value inequality, Jensen’s
inequality, and Fubini’s theorem, we haveˆ 1

0
|u(y) − u(ry)|prm−1 dr ≤

ˆ 1

0

(ˆ 1

r
|∇u(sy)| ds

)p

rm−1 dr

≤
ˆ 1

0

ˆ 1

r
|∇u(sy)|p(1 − r)p−1rm−1 ds dr

≤
ˆ 1

0
|∇u(sy)|p

ˆ s

0
(1 − r)p−1rm−1 dr ds

≤ 1
m

ˆ 1

0
|Du(ry)|prm dr ,

and thus by spherical integrationˆ
Bm

|u(x/|x|) − u(x)|p dx ≤ 1
m

ˆ
Bm

|x||Du(x)|p dx . (5.3)

On the other hand, by the Poincaré inequality we have¨
Bm×Bm

|u(x) − u(y)|p dx dy ≤ C1

ˆ
Bm

|Du|p . (5.4)
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Combining (5.3) and (5.4) with the triangle inequality, we get¨

∂Bm×Bm

|u(x) − u(y)|p dy dx

= m

¨

Bm×Bm

|u(x/|x|) − u(y)|p dy dx

≤ C2

( ¨

Bm×Bm

|u(x/|x|) − u(x)|p dy dx +
¨

Bm×Bm

|u(x) − u(y)|p dy dx

)

≤ C3

ˆ
Bm

|Du|p . □

A last tool is a measure-theoretical lemma that describes the concentration of measures
on balls.
Lemma 5.5. Let µ be a Radon measure on M, η ∈ (0, ∞), and let

A := {a ∈ X | µ(a) ≥ η} .
If ρ ∈ (0, ∞) is sufficiently small, then for every x ∈ M \

⋃
a∈A Bρ(a), one has

µ(B̄ρ/2(x)) < η .
Proof. Assume by contradiction that there is a sequence (ρj)j∈N in (0, ∞) converging to
0 and a sequence (xj)j∈N in M such that xj ∈ M \

⋃
a∈A Bρj (a) and

µ(B̄ρj/2(xj)) ≥ η .
Since M is compact, we can assume that (xj)j∈N converges to some a ∈ M.

Given δ > 0, if j ∈ N is sufficiently large, B̄ρj/2(xj) ⊆ B̄δ(a), and thus

µ(B̄δ(a)) ≥ µ(B̄ρj/2(xj)) ≥ η .
Letting δ → 0, µ({a}) ≥ η and thus a ∈ A.

By assumption, we have
ρj ≤ |xj − a| .

Taking a further subsequence if necessary, we can assume that
3|xj+1 − a| < |xj − a| .

It follows then that if k > j,
|xj − xk| ≥ |xj − a| − |xk − a|

= |xj − a| + |xk − a|
2 + |xj − a| − 3|xk − a|

2
>

ρj + ρk

2 ,

and thus B̄ρj/2(xj) ∩ B̄ρk/2(xk) = ∅. We have then

µ(M) ≥
∑
j∈N

µ(B̄ρj/2(xj)) = ∞ ,

in contradiction with the finiteness of the Radon measure µ on the compact space M. □
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We now have all the tools at our disposal in order to prove the main result of this
section.

Proof of Theorem 5.1. By a classical lower semi-continuity argument, we have for every
φ ∈ C(M, [0, ∞)) ˆ

M
φ dµ = lim

j→∞

ˆ
M

|Dvj |mφ ≥
ˆ

M
|Du|mφ ,

so that, as measures,
µ ≥ |Du|m . (5.5)

We now apply an approximation argument, in order to be able to work instead with
smooth maps. More specifically, by the strong density of smooth maps in W1,m(M, N ),
there exist sequences (ûj)j∈N and (v̂j)j∈N in C∞(M, N ) such that

lim
j→∞

ˆ
M

|Dûj − Du|m + d(ûj , u)m = 0 (5.6)

and
lim

j→∞

ˆ
M

|Dv̂j − Dvj |m + d(v̂j , vj)m = 0 . (5.7)

It follows from Proposition 2.4 that for each j ∈ N sufficiently large, the map ûj is
homotopic to u in VMO(M, N ) whereas the map v̂j is homotopic to vj in C(M, N ).

After these preliminaries, we are at the heart of the proof of Theorem 5.1. We first
study the points where energy concentration occurs. For some η ∈ (0, ∞) to be fixed, we
define the set

{a1, . . . , aI} = {a ∈ M | µ({a}) ≥ η} .
If ρ ∈ (0, ∞) is chosen sufficiently small according to Lemma 5.5, then if j ∈ N is
sufficiently large, for every x ∈ M \

⋃I
i=1 Bρ(ai), we haveˆ

Bρ/2(x)
|Dvj |m < η .

Indeed, assume that there is a sequence (xj)j∈N such that xj ∈ M \
⋃I

i=1 Bρ(ai) and
such that ˆ

Bρ/2(xj)
|Dvj |m ≥ η ;

in view of the compactness of M, we can assume up to a subsequence that (xj)j∈N
converges to some x∗ ∈ M \

⋃I
i=1Bρ(ai); if σ > ρ, then

µ(B̄σ/2(x∗)) ≥ lim sup
j→∞

ˆ
Bσ/2(x∗)

|Dvj |m ≥ lim sup
j→∞

ˆ
Bρ/2(xj)

|Dvj |m ≥ η ,

so that
µ(B̄ρ/2(x∗)) = lim

σ→
>

ρ
µ(B̄σ/2(x∗)) ≥ η .

In view of the definition of the set {a1, . . . , aI} and of Lemma 5.5, this cannot hold when
ρ is sufficiently small.
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If j ∈ N is sufficiently large, we also obtain from (5.7) that for every x ∈ M\
⋃I

i=1Bρ(ai),
ˆ

Bρ/2(x)
|Dv̂j |m < η . (5.8)

Concerning the energy around the concentration points, it is governed by the measure µ.
More specifically, given ε > 0, using (5.7) and assumption (c), we may assume that j is
sufficiently large so that

ˆ
Bρ(ai)

|Dv̂j |m ≤ µ(B̄ρ(ai)) + ε . (5.9)

On the contrary, concerning the maps ûj , we may have a small energy estimate on every
ball. Indeed, using (5.6) and Vitali’s convergence theorem, if ρ ∈ (0, ∞) is sufficiently
small and j ∈ N is sufficiently large, then for every x ∈ M,

ˆ
Bρ(x)

|Dûj |m < η . (5.10)

We now wish to construct our desired map w by removing the bubbles on the balls
Bρ(ai) by using Lemma 5.3. For this purpose, we first find a suitable radius ρ to work
on. By a Fubini-type argument, relying on the assumption (b) and using (5.6) and (5.7)
again, we can assume that

lim
j→∞

ˆ
∂Bρ(ai)

d(ûj , v̂j)m = 0 . (5.11)

Moreover, by Fatou’s lemma and Fubini’s theorem, it also holds that
ˆ ρ

0

(
lim inf

j→∞
r

ˆ
∂Br(ai)

|Dv̂j |m
) dr

r
≤ lim inf

j→∞

ˆ ρ

0

(ˆ
∂Br(ai)

|Dv̂j |m
)

dr

≤ C1 lim inf
j→∞

ˆ
M

|Dvj |m < ∞ ,

so that we can assume that

lim inf
j→∞

ρ

ˆ
∂Bρ(ai)

|Dv̂j |m ≤ ε ≤ η .

Applying Lemma 5.3 to every ball Bρ(ai), we get a map ũj ∈ W1,m(M, N ) ∩ C(M, N )
such that ũj = v̂j in M \

⋃I
i=1 Bρ(ai) and

ˆ
Bρ(ai)

|Dũj |m ≤ C2ρ

ˆ
∂Bρ(ai)

|Dv̂j |m ≤ C3ε . (5.12)

It follows then that for every a ∈ M,
ˆ

Bρ/2(a)
|Dũj |m ≤ C4η .
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By the mixed Poincaré inequality (Lemma 5.4), we have
 

Bρ(ai)
d(ûj , ũj)m ≤ C5

( 
∂Bρ(ai)

d(ûj , ũj)m

+
 

Bρ(ai)

 
∂Bρ(ai)

d(ûj(x), ûj(y))m + d(ũj(x), ũj(y))m dx dy

)
≤ C6

( 
∂Bρ(ai)

d(ûj , v̂j)m +
ˆ

Bρ(ai)
|Dûj |m + |Dũj |m

)
.

If j is sufficiently large, relying on (5.11), (5.10), and (5.12), we have 
Bρ(ai)

d(ûj , ũj)m ≤ C7η .

In addition, if j is sufficiently large (depending on ρ), then

1
ρm

ˆ
M\

⋃I

i=1 Bρ(ai)
d(ûj , ũj)m = 1

ρm

ˆ
M\

⋃I

i=1 Bρ(ai)
d(ûj , v̂j)m ≤ η .

We are therefore in position to apply Proposition 5.2 and conclude that ũj and ûj are
homotopic.

We now turn to the estimate of the disparity energy on the balls Bρ(ai). By Proposi-
tion 4.14, we have then for every i ∈ I, in view of (5.9) and (5.12),

E1,m
top ([ũj , v̂j , Bρ(ai)]) ≤ (1 + C8ρ)

ˆ
Bρ(ai)

|Dv̂j |m + |Dũj |m

≤ µ(B̄ρ(ai)) + C9(ρ + ε) .
(5.13)

The factor 1 + C8ρ in (5.13) accounts for the distortion when identifying B̄ρ(ai) with the
Euclidean unit ball Bm. Since the range of E1,m

top is discrete (Proposition 4.13 (vi)), we
have for some ρ sufficiently small

E1,m
top ([ũj , v̂j , Bρ(ai)]) ≤ µ(ai) .

The map w is then defined thanks to Lemma 4.7, using that v̂j = ũj in M\
⋃I

i=1 Bρ(ai)
and that v is homotopic to v̂j for j sufficiently large; it satisfies the conclusion in view of
Proposition 4.13 (v). □

Proof of Theorem 1.5. We apply Theorem 5.1; relying on Lemma 4.7, we may assume
that instead w = u in M \

⋃I
i=1 Bρ(ai), w is homotopic to v, and

µ ≥ |Du|m +
I∑

i=1
E1,m

top ([u, w, Bρ(ai)]) δai , (5.14)

where we have used Proposition 4.13 (v) and Lemma 4.5. A standard smoothing argument
allows to obtain the additional regularity w ∈ C∞(M, N ).

The inequality (1.2) follows from (5.14) and properties of the convergence of measures;
(1.3) follows then from Proposition 4.17. □
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Let us observe that the above proof shows that the conclusion of Theorem 1.5 holds
under the weaker assumption that u ∈ W1,m(M, N ) ∩ C(M, N ) and v ∈ C(M, N ); in
this case, the map w that we obtain is only continuous, not smooth.

We are now in position to conclude the proof of Theorem 1.1 – and even a low regularity
version of it – by proving the lower bound on the heterotopic energy.

Theorem 5.6. If u ∈ W1,m(M, N ) ∩ C(M, N ) and v ∈ C(M, N ), then

E1,m
het (u, v) =

ˆ
M

|Du|m + E1,m
disp(u, v) .

Proof. This follows from Proposition 4.19 and Theorem 1.5 (or more precisely, its lower
regularity counterpart, see the comment following the proof of Theorem 1.5). □

We conclude with the following statement concerning the continuity of the heterotopic
energy with respect to the strong W1,m convergence.

Proposition 5.7. If (uj)j∈N is a sequence in W1,m(M, N ) converging strongly to u ∈
W1,m(M, N ), then

E1,m
het (u, v) = lim

j→∞
E1,m

het (uj , v) .

Proof. This follows from Theorem 5.6 and Proposition 4.16. □
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