Analytical obstructions to the weak approximation of Sobolev mappings into manifolds

Antoine Detaille

Université Claude Bernard Lyon 1 — Institut Camille Jordan Website: andetaille.github.io

The 11th of June 2025

In this talk

Main goal: new families of counterexamples to the weak approximation property of Sobolev mappings into manifolds, joint work with J. Van Schaftingen (UCLouvain).

On the way:

- Sobolev mappings: definition and motivation;
- the strong density problem: statement and complete answer;
- the weak approximation problem: statement and state of the art.

Sobolev spaces with values into manifolds

Let \mathcal{N} be a smooth compact Riemannian manifold, isometrically embedded in \mathbb{R}^{ν} . Let \mathcal{M} be a smooth compact Riemannian manifold of dimension m and $1 \le p < +\infty$.

Definition

$$W^{1,p}(\mathcal{M};\mathcal{N}) = \{ u \in W^{1,p}(\mathcal{M};\mathbb{R}^{\nu}) : u(x) \in \mathcal{N} \text{ for almost every } x \in \mathcal{M} \}$$

The strong density problem

Theorem

The space $C^{\infty}(\mathcal{M})$ is dense in $W^{1,p}(\mathcal{M})$.

Ouestion

Define

$$H^{1,p}_S(\mathcal{M};\mathcal{N})=\{u\in W^{1,p}(\mathcal{M};\mathcal{N}): \text{there exists } (u_n)_{n\in\mathbb{N}} \text{ in } C^\infty(\mathcal{M};\mathcal{N}) \text{ such that } u_n\to u\}.$$

Does it hold that
$$H_S^{1,p}(\mathcal{M}; \mathcal{N}) = W^{1,p}(\mathcal{M}; \mathcal{N})$$
?

The strong density problem

Theorem

The space $C^{\infty}(\mathcal{M})$ is dense in $W^{1,p}(\mathcal{M})$.

Question

Define

$$H_S^{1,p}(\mathcal{M};\mathcal{N}) = \{u \in W^{1,p}(\mathcal{M};\mathcal{N}) : \text{there exists } (u_n)_{n \in \mathbb{N}} \text{ in } C^{\infty}(\mathcal{M};\mathcal{N}) \text{ such that } u_n \to u\}.$$

Does it hold that $H_S^{1,p}(\mathcal{M}; \mathcal{N}) = W^{1,p}(\mathcal{M}; \mathcal{N})$?

The strong density theorem

Theorem (Bethuel (1991))

Assume that p < m. Then, $H_S^{1,p}(\mathbb{B}^m; \mathcal{N}) = W^{1,p}(\mathbb{B}^m; \mathcal{N})$ if and only if $\pi_{\lfloor p \rfloor}(\mathcal{N}) = \{0\}$.

Extensions to $W^{s,p}$: Brezis and Mironescu (2015, 0 < s < 1); Bousquet, Ponce, and Van Schaftingen (2015, s = 2, 3, ...); D. (2023, s > 1 noninteger).

The case where \mathcal{M} is topologically non-trivial was explored by Hang and Lin (2003). There, *global* obstructions may arise.

The strong density theorem

Theorem (Bethuel (1991))

Assume that p < m. Then, $H_S^{1,p}(\mathbb{B}^m; \mathcal{N}) = W^{1,p}(\mathbb{B}^m; \mathcal{N})$ if and only if $\pi_{\lfloor p \rfloor}(\mathcal{N}) = \{0\}$.

Extensions to $W^{s,p}$: Brezis and Mironescu (2015, 0 < s < 1); Bousquet, Ponce, and Van Schaftingen (2015, s = 2, 3, ...); D. (2023, s > 1 noninteger).

The case where \mathcal{M} is topologically non-trivial was explored by Hang and Lin (2003). There, *global* obstructions may arise.

The strong density theorem

Theorem (Bethuel (1991))

Assume that p < m. Then, $H_S^{1,p}(\mathbb{B}^m; \mathcal{N}) = W^{1,p}(\mathbb{B}^m; \mathcal{N})$ if and only if $\pi_{\lfloor p \rfloor}(\mathcal{N}) = \{0\}$.

Extensions to $W^{s,p}$: Brezis and Mironescu (2015, 0 < s < 1); Bousquet, Ponce, and Van Schaftingen (2015, s = 2, 3, ...); D. (2023, s > 1 noninteger).

The case where \mathcal{M} is topologically non-trivial was explored by Hang and Lin (2003). There, *global* obstructions may arise.

Let's be less demanding: weak approximation

We say that $(u_n)_{n\in\mathbb{N}}$ weakly converges to u in $W^{1,p}$, and we write $u_n \to u$, whenever $u_n \to u$ almost everywhere and

$$\sup_{n\in\mathbb{N}} \mathcal{E}^{1,p}(u_n,\mathcal{M}) = \sup_{n\in\mathbb{N}} \int_{\mathcal{M}} |\mathsf{D}u_n|^p < +\infty.$$

Define

$$H^{1,p}_W(\mathcal{M};\mathcal{N})=\{u\in W^{1,p}(\mathcal{M};\mathcal{N}): \text{there exists } (u_n)_{n\in\mathbb{N}} \text{ in } C^\infty(\mathcal{M};\mathcal{N}) \text{ such that } u_n\rightharpoonup u\}.$$

Question

Does it hold that $H_W^{1,p}(\mathcal{M}; \mathcal{N}) = W^{1,p}(\mathcal{M}; \mathcal{N})$?

Let's be less demanding: weak approximation

We say that $(u_n)_{n\in\mathbb{N}}$ weakly converges to u in $W^{1,p}$, and we write $u_n \to u$, whenever $u_n \to u$ almost everywhere and

$$\sup_{n\in\mathbb{N}} \mathcal{E}^{1,p}(u_n,\mathcal{M}) = \sup_{n\in\mathbb{N}} \int_{\mathcal{M}} |\mathsf{D}u_n|^p < +\infty.$$

Define

$$H^{1,p}_W(\mathcal{M};\mathcal{N})=\{u\in W^{1,p}(\mathcal{M};\mathcal{N}): \text{there exists } (u_n)_{n\in\mathbb{N}} \text{ in } C^\infty(\mathcal{M};\mathcal{N}) \text{ such that } u_n\rightharpoonup u\}.$$

Question

Does it hold that $H_W^{1,p}(\mathcal{M}; \mathcal{N}) = W^{1,p}(\mathcal{M}; \mathcal{N})$?

A topological obstruction: here we go again?

If
$$p \notin \mathbb{N}$$
 and $\pi_{\lfloor p \rfloor}(\mathcal{N}) \neq \{0\}$, then $H^{1,p}_W(\mathcal{M}; \mathcal{N}) \subsetneq W^{1,p}(\mathcal{M}; \mathcal{N})$ whenever dim $\mathcal{M} > p$.

Theorem (Bethuel (1991)

If
$$p \notin \mathbb{N}$$
, then $H_W^{1,p}(\mathcal{M}; \mathcal{N}) = H_S^{1,p}(\mathcal{M}; \mathcal{N})$.

A topological obstruction: here we go again?

If $p \notin \mathbb{N}$ and $\pi_{\lfloor p \rfloor}(\mathcal{N}) \neq \{0\}$, then $H^{1,p}_W(\mathcal{M}; \mathcal{N}) \subsetneq W^{1,p}(\mathcal{M}; \mathcal{N})$ whenever dim $\mathcal{M} > p$.

Theorem (Bethuel (1991))

If
$$p \notin \mathbb{N}$$
, then $H_W^{1,p}(\mathcal{M}; \mathcal{N}) = H_S^{1,p}(\mathcal{M}; \mathcal{N})$.

Unlike for $2 , we have <math>\frac{x}{|x|} \in H_W^{1,2}(\mathbb{B}^3; \mathbb{S}^2)$.

More generally, we have

- $\bullet \ H_S^{1,2}(\mathbb{B}^3;\mathbb{S}^2) \subsetneq H_W^{1,2}(\mathbb{B}^3;\mathbb{S}^2) = W^{1,2}(\mathbb{B}^3;\mathbb{S}^2) \ (\text{Bethuel (1990)});$
- $H_W^{1,p}(\mathcal{M};\mathcal{N})=W^{1,p}(\mathcal{M};\mathcal{N})$ whenever \mathcal{N} is (p-1)-connected (Hajłasz (1994));
- $H_W^{1,2}(\mathcal{M}; \mathcal{N}) = W^{1,2}(\mathcal{M}; \mathcal{N})$ for more general \mathcal{N} (Pakzad and Rivière (2003)).

Unlike for $2 , we have <math>\frac{x}{|x|} \in H_W^{1,2}(\mathbb{B}^3; \mathbb{S}^2)$.

More generally, we have:

- $H_S^{1,2}(\mathbb{B}^3;\mathbb{S}^2) \subsetneq H_W^{1,2}(\mathbb{B}^3;\mathbb{S}^2) = W^{1,2}(\mathbb{B}^3;\mathbb{S}^2)$ (Bethuel (1990));
- $H_W^{1,p}(\mathcal{M};\mathcal{N})=W^{1,p}(\mathcal{M};\mathcal{N})$ whenever \mathcal{N} is (p-1)-connected (Hajłasz (1994));
- $H_W^{1,2}(\mathcal{M}; \mathcal{N}) = W^{1,2}(\mathcal{M}; \mathcal{N})$ for more general \mathcal{N} (Pakzad and Rivière (2003)).

Unlike for $2 , we have <math>\frac{x}{|x|} \in H_W^{1,2}(\mathbb{B}^3; \mathbb{S}^2)$.

More generally, we have:

- $H_S^{1,2}(\mathbb{B}^3;\mathbb{S}^2) \subseteq H_W^{1,2}(\mathbb{B}^3;\mathbb{S}^2) = W^{1,2}(\mathbb{B}^3;\mathbb{S}^2)$ (Bethuel (1990));
- $H_W^{1,p}(\mathcal{M}; \mathcal{N}) = W^{1,p}(\mathcal{M}; \mathcal{N})$ whenever \mathcal{N} is (p-1)-connected (Hajłasz (1994));
- $H_W^{1,2}(\mathcal{M}; \mathcal{N}) = W^{1,2}(\mathcal{M}; \mathcal{N})$ for more general \mathcal{N} (Pakzad and Rivière (2003)).

Unlike for $2 , we have <math>\frac{x}{|x|} \in H_W^{1,2}(\mathbb{B}^3; \mathbb{S}^2)$.

More generally, we have:

- $H_S^{1,2}(\mathbb{B}^3;\mathbb{S}^2) \subsetneq H_W^{1,2}(\mathbb{B}^3;\mathbb{S}^2) = W^{1,2}(\mathbb{B}^3;\mathbb{S}^2)$ (Bethuel (1990));
- $H_W^{1,p}(\mathcal{M};\mathcal{N})=W^{1,p}(\mathcal{M};\mathcal{N})$ whenever \mathcal{N} is (p-1)-connected (Hajłasz (1994));
- $H_W^{1,2}(\mathcal{M}; \mathcal{N}) = W^{1,2}(\mathcal{M}; \mathcal{N})$ for more general \mathcal{N} (Pakzad and Rivière (2003)).

Unlike for $2 , we have <math>\frac{x}{|x|} \in H_W^{1,2}(\mathbb{B}^3; \mathbb{S}^2)$.

More generally, we have:

- $H_S^{1,2}(\mathbb{B}^3;\mathbb{S}^2) \subseteq H_W^{1,2}(\mathbb{B}^3;\mathbb{S}^2) = W^{1,2}(\mathbb{B}^3;\mathbb{S}^2)$ (Bethuel (1990));
- $H_W^{1,p}(\mathcal{M};\mathcal{N})=W^{1,p}(\mathcal{M};\mathcal{N})$ whenever \mathcal{N} is (p-1)-connected (Hajłasz (1994));
- $H^{1,2}_W(\mathcal{M};\mathcal{N})=W^{1,2}(\mathcal{M};\mathcal{N})$ for more general \mathcal{N} (Pakzad and Rivière (2003)).

Obstructions strike back: the analytical obstruction

Theorem (Bethuel (2020))

If $m \ge 4$, then $H_W^{1,3}(\mathcal{M}; \mathbb{S}^2) \subsetneq W^{1,3}(\mathcal{M}; \mathbb{S}^2)$.

Global topological obstructions were already known (Hang and Lin (2003)). Here, the obstruction is local: it arises already if $\mathcal{M} = \mathbb{B}^4$.

Ingredients involve: the Hopf invariant, Pontryagin construction, the theory of scans by Hardt and Rivière (2003), and branched optimal transportation.

Obstructions strike back: the analytical obstruction

Theorem (Bethuel (2020))

If $m \ge 4$, then $H_W^{1,3}(\mathcal{M}; \mathbb{S}^2) \subsetneq W^{1,3}(\mathcal{M}; \mathbb{S}^2)$.

Global topological obstructions were already known (Hang and Lin (2003)). Here, the obstruction is local: it arises already if $\mathcal{M} = \mathbb{B}^4$.

Ingredients involve: the Hopf invariant, Pontryagin construction, the theory of scans by Hardt and Rivière (2003), and branched optimal transportation.

Obstructions strike back: the analytical obstruction

Theorem (Bethuel (2020))

If $m \ge 4$, then $H_W^{1,3}(\mathcal{M}; \mathbb{S}^2) \subsetneq W^{1,3}(\mathcal{M}; \mathbb{S}^2)$.

Global topological obstructions were already known (Hang and Lin (2003)).

Here, the obstruction is local: it arises already if $\mathcal{M} = \mathbb{B}^4$.

Ingredients involve: the Hopf invariant, Pontryagin construction, the theory of scans by Hardt and Rivière (2003), and branched optimal transportation.

An analytical obstruction for every $p \in \mathbb{N} \setminus \{0, 1\}$

Theorem (D. and Van Schaftingen (2024))

For every $p \in \mathbb{N} \setminus \{0, 1\}$, there exists a compact Riemannian manifold \mathcal{N} such that, if $\dim \mathcal{M} > p$, then

$$H^{1,p}_W(\mathcal{M};\mathcal{N}) \subsetneq W^{1,p}(\mathcal{M};\mathcal{N}).$$

Key procedure in the proof: superlinear energy growth

The *relaxed energy* is defined as

$$\mathcal{E}_{\mathrm{rel}}^{1,p}(u,\mathcal{M}) = \inf \liminf_{n \to +\infty} \int_{\mathcal{M}} |\mathsf{D}u_n|^p,$$

where the inf is over all sequences of $C^{\infty}(\mathcal{M}; \mathcal{N})$ maps converging a.e. to u.

We construct a sequence $(u_n)_{n\in\mathbb{N}}$ such that

$$\liminf_{n \to +\infty} \frac{\mathcal{E}_{\mathrm{rel}}^{1,p}(u_n, \mathcal{M})}{\mathcal{E}^{1,p}(u_n, \mathcal{M})} = +\infty.$$

The conclusion follows from the nonlinear uniform boundedness principle (Hang and Lin (2003), Monteil and Van Schaftingen (2019)), a nonlinear version of the Banach–Steinhaus theorem

Key procedure in the proof: superlinear energy growth

The relaxed energy is defined as

$$\mathcal{E}_{\mathrm{rel}}^{1,p}(u,\mathcal{M}) = \inf \liminf_{n \to +\infty} \int_{\mathcal{M}} |\mathsf{D}u_n|^p,$$

where the inf is over all sequences of $C^{\infty}(\mathcal{M}; \mathcal{N})$ maps converging a.e. to u. We construct a sequence $(u_n)_{n\in\mathbb{N}}$ such that

$$\liminf_{n\to+\infty} \frac{\mathcal{E}_{\mathrm{rel}}^{1,p}(u_n,\mathcal{M})}{\mathcal{E}^{1,p}(u_n,\mathcal{M})} = +\infty.$$

The conclusion follows from the nonlinear uniform boundedness principle (Hang and Lin (2003), Monteil and Van Schaftingen (2019)), a nonlinear version of the Banach–Steinhaus theorem.

A second family of analytical obstructions

Theorem (D. and Van Schaftingen (2024))

For every $n \in \mathbb{N}_*$, if dim $\mathcal{M} > 4n - 1$, then

$$H_W^{1,4n-1}(\mathcal{M};\mathbb{S}^{2n})\subsetneq W^{1,4n-1}(\mathcal{M};\mathbb{S}^{2n}).$$

The key ingredient is a periodic construction using a Whitehead product.

This shows that Bethuel's counterexample is actually part of an infinite family (and considerably simplifies the proof).

A second family of analytical obstructions

Theorem (D. and Van Schaftingen (2024))

For every $n \in \mathbb{N}_*$, if dim $\mathcal{M} > 4n - 1$, then

$$H_W^{1,4n-1}(\mathcal{M};\mathbb{S}^{2n}) \subseteq W^{1,4n-1}(\mathcal{M};\mathbb{S}^{2n}).$$

The key ingredient is a periodic construction using a Whitehead product.

This shows that Bethuel's counterexample is actually part of an infinite family (and considerably simplifies the proof).

Thank you for your attention!