Strong density in Sobolev spaces to manifolds

Antoine Detaille

Université Claude Bernard Lyon 1 – Institut Camille Jordan

January 2024

Antoine Detaille (UCBL1 - ICJ)

Density in Sobolev spaces to manifolds

January 2024

Sobolev spaces with values into manifolds

Let \mathcal{N} be a smooth compact Riemannian manifold, isometrically embedded into \mathbb{R}^{ν} . Let $\Omega \subset \mathbb{R}^m$ be a bounded open set, $1 \leq p < +\infty$, and $0 < s < +\infty$.

Definition

 $W^{s,p}(\Omega; \mathcal{N}) = \{ u \in W^{s,p}(\Omega; \mathbb{R}^{\nu}) : u(x) \in \mathcal{N} \text{ for almost every } x \in \Omega \}$

Antoine Detaille (UCBL1 – ICJ)

Reminder: classical Sobolev spaces

Let $s = k + \sigma$ with $k \in \mathbb{N}$ and $\sigma \in [0, 1)$.

 $W^{k,p}(\Omega) = \{ u \in L^p(\Omega) : D^j u \in L^p(\Omega) \text{ for every } j \in \{1, \dots, k\} \}$

If $\sigma \in (0, 1)$,

$$W^{\sigma,p}(\Omega) = \left\{ u \in L^p(\Omega) \colon \int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^p}{|x - y|^{m + \sigma p}} \, \mathrm{d}x \, \mathrm{d}y < +\infty \right\}.$$

If $k \geq 1$,

$$W^{s,p}(\Omega) = \{ u \in W^{k,p}(\Omega) : D^k u \in W^{\sigma,p}(\Omega) \}.$$

A few applications

Applications in problems from physics: liquid crystals ($\2 , \mathbb{RP}^2), supraconductivity (Ginzburg-Landau, $\1), biaxial liquid crystals, superfluid helium...

Applications in problems from numerical methods: meshing domains.

Figure: A field of liquid crystals

Figure: Meshing the earth (see the *Hextreme* project: www.hextreme.eu)

January 2024

The strong density problem

Theorem

 $C^{\infty}(\overline{\Omega})$ is dense in $W^{s,p}(\Omega)$

Question Is $C^{\infty}(\overline{\Omega}; \mathcal{N})$ dense in $W^{s,p}(\Omega; \mathcal{N})$?

Antoine Detaille (UCBL1 - ICJ)

Density in Sobolev spaces to manifolds

イロト イラト イヨト イヨト January 2024

Э

The strong density problem

Theorem

 $C^{\infty}(\overline{\Omega})$ is dense in $W^{s,p}(\Omega)$

Question Is $C^{\infty}(\overline{\Omega}; \mathcal{N})$ dense in $W^{s,p}(\Omega; \mathcal{N})$?

Antoine Detaille (UCBL1 – ICJ)

Density in Sobolev spaces to manifolds

▲ □ ▷ ▲ @ ▷ ▲ 볼 ▷ ▲ 볼 ▷ January 2024

A topological obstruction

For $1 \le p < 2$, the map $u \in W^{1,p}(\mathbb{B}^2; \mathbb{S}^1)$ defined by

$$u(x) = \frac{x}{|x|}$$

cannot be approached by maps in $C^{\infty}(\overline{\mathbb{B}^2}; \mathbb{S}^1)$.

Theorem (Schoen, Uhlenbeck (1983); Bethuel, Zheng (1988); Escobedo (1988))

Assume that sp < m. If $C^{\infty}(\overline{\Omega}; \mathcal{N})$ is dense in $W^{s,p}(\Omega; \mathcal{N})$, then $\pi_{\lfloor sp \rfloor}(\mathcal{N}) = \{0\}.$

Antoine Detaille (UCBL1 – ICJ)

Density in Sobolev spaces to manifolds

January 2024

イロト イポト イヨト イヨト

A topological obstruction

For $1 \le p < 2$, the map $u \in W^{1,p}(\mathbb{B}^2; \mathbb{S}^1)$ defined by

$$u(x) = \frac{x}{|x|}$$

cannot be approached by maps in $C^{\infty}(\overline{\mathbb{B}^2}; \mathbb{S}^1)$.

Theorem (Schoen, Uhlenbeck (1983); Bethuel, Zheng (1988); Escobedo (1988))

Assume that sp < m. If $C^{\infty}(\overline{\Omega}; \mathcal{N})$ is dense in $W^{s,p}(\Omega; \mathcal{N})$, then $\pi_{\lfloor sp \rfloor}(\mathcal{N}) = \{0\}.$

イロト イポト イヨト イヨト 二日

Two natural questions

- Can we characterize those *N* such that C[∞](Ω; *N*) is dense in W^{s,p}(Ω; *N*)?
- Can we find a class of *almost smooth* maps that is always dense in *W^{s,p}(Ω; N)*?

Definition

The class $\mathcal{R}_i(\Omega; \mathcal{N})$ is the set of all maps u such that there exists a finite union of *i*-submanifolds $\mathcal{S} = \mathcal{S}_u \subset \mathbb{R}^m$ such that $u \in C^{\infty}(\overline{\Omega} \setminus \mathcal{S}; \mathcal{N})$ and

$$|D^{j}u(x)| \leq C \frac{1}{\operatorname{dist}(x, \mathcal{S})^{j}}$$
 for every $x \in \Omega$ and $j \in \mathbb{N}_{*}$.

where C > 0 is a constant depending on u and j.

Antoine Detaille (UCBL1 – ICJ)

Density in Sobolev spaces to manifolds

January 2024

イロト イポト イヨト イヨト

Э

Two natural questions

- Can we characterize those *N* such that C[∞](Ω; *N*) is dense in W^{s,p}(Ω; *N*)?
- Can we find a class of *almost smooth* maps that is always dense in *W^{s,p}(Ω; N)*?

Definition

The class $\mathcal{R}_i(\Omega; \mathcal{N})$ is the set of all maps u such that there exists a finite union of *i*-submanifolds $\mathcal{S} = \mathcal{S}_u \subset \mathbb{R}^m$ such that $u \in C^{\infty}(\overline{\Omega} \setminus \mathcal{S}; \mathcal{N})$ and

$$|D^{j}u(x)| \leq C \frac{1}{\operatorname{dist}(x, \mathcal{S})^{j}}$$
 for every $x \in \Omega$ and $j \in \mathbb{N}_{*}$,

where C > 0 is a constant depending on u and j.

Antoine Detaille (UCBL1 – ICJ)

Density in Sobolev spaces to manifolds

January 2024

An answer to both questions

Theorem

The class $\mathcal{R}_{m-\lfloor sp \rfloor-1}(Q^m; \mathcal{N})$ is always dense in $W^{s,p}(Q^m; \mathcal{N})$. The class $C^{\infty}(\overline{Q^m}; \mathcal{N})$ is dense in $W^{s,p}(Q^m; \mathcal{N})$ if and only if $\pi_{\lfloor sp \rfloor}(\mathcal{N}) = \{0\}$.

- Case *s* = 1: Bethuel (1991), method of good and bad cubes;
- Case 0 < *s* < 1: Brezis and Mironescu (2015), method of homogeneous extension;
- Case *s* = 2, 3, ...: Bousquet, Ponce, and Van Schaftingen (2015), method of good and bad cubes *plus* new tools for higher order spaces;
- Case s > 1 non-integer: new, method of good and bad cubes *plus* new tools for higher order spaces *plus* new ideas for fractional estimates.

Can we improve the class \mathcal{R}_i ?

Fact

If $\pi_{\lfloor sp \rfloor}(\mathcal{N}) \neq \{0\}$, then the class $\mathcal{R}_i(Q^m; \mathcal{N})$ is dense in $W^{s,p}(Q^m; \mathcal{N})$ if and only if $i = m - \lfloor sp \rfloor - 1$.

Definition

The class $\mathscr{R}_i(\Omega; \mathscr{N})$ is the set of all $u \in \mathscr{R}_i(\Omega; \mathscr{N})$ such that the singular set \mathscr{S} is a closedly embedded *i*-dimensional submanifold of \mathbb{R}^m .

Antoine Detaille (UCBL1 – ICJ)

Density in Sobolev spaces to manifolds

January 2024

Can we improve the class \mathcal{R}_i ?

Fact

If $\pi_{\lfloor sp \rfloor}(\mathcal{N}) \neq \{0\}$, then the class $\mathcal{R}_i(Q^m; \mathcal{N})$ is dense in $W^{s,p}(Q^m; \mathcal{N})$ if and only if $i = m - \lfloor sp \rfloor - 1$.

Definition

The class $\mathscr{R}_i(\Omega; \mathscr{N})$ is the set of all $u \in \mathscr{R}_i(\Omega; \mathscr{N})$ such that the singular set \mathscr{S} is a closedly embedded *i*-dimensional submanifold of \mathbb{R}^m .



Theorem

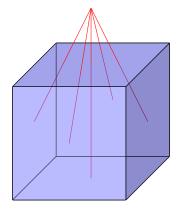
Assume that sp < m. The class $\mathscr{R}_{m-\lfloor sp \rfloor-1}(Q^m; \mathcal{N})$ is dense in $W^{s,p}(Q^m; \mathcal{N})$.

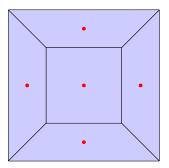
Antoine Detaille (UCBL1 – ICJ)

Density in Sobolev spaces to manifolds

▲ □ ▷ ▲ @ ▷ ▲ 볼 ▷ ▲ 볼 ▷ January 2024

The crossings removal procedure: basic idea



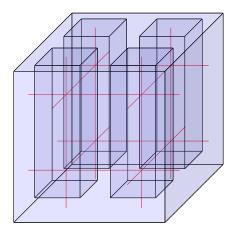


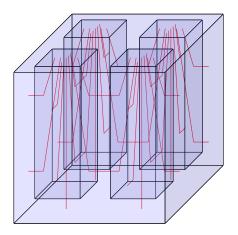
Antoine Detaille (UCBL1 – ICJ)

Density in Sobolev spaces to manifolds

January 2024

The crossings removal procedure: uncrossing lines



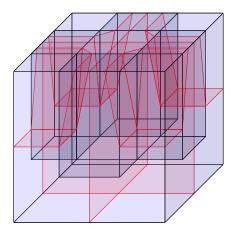


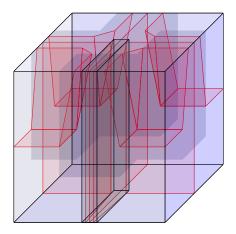
Density in Sobolev spaces to manifolds

January 2024

A B > 4
 B > 4
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
C

The crossings removal procedure: uncrossing planes





Antoine Detaille (UCBL1 – ICJ)

Density in Sobolev spaces to manifolds

January 2024

イロト イロト イヨト

Thank you for your attention!

Antoine Detaille (UCBL1 – ICJ)

Density in Sobolev spaces to manifolds

January 2024

글 🖒 🛛 글