A new decomposition for Borel measures dominated by the Hausdorff measure \mathcal{H}^s

Antoine Detaille

Université Claude Bernard Lyon 1 - Institut Camille Jordan

Joint work with Augusto Ponce (UCLouvain)

June 2023

The Hausdorff measure \mathcal{H}^s

Let $0 \leq s < +\infty$ and $E \subset \mathbb{R}^N$.

Given $0 < \delta \leq +\infty$, we define the *Hausdorff capacity* $\mathcal{H}^{s}_{\delta}(E)$ by

$$\mathcal{H}^{s}_{\delta}(E) = \inf \left\{ \sum_{n \in \mathbb{N}} \omega_{s} r_{n}^{s} : E \subset \bigcup_{n \in \mathbb{N}} B_{r_{n}}(x_{n}), 0 \leq r_{n} \leq \delta \right\}.$$

Here, $\omega_s = \frac{\pi^{\frac{s}{2}}}{\Gamma(\frac{s}{2}+1)}$.

The Hausdorff content is $\mathcal{H}^{s}_{\infty}(E)$.

We define the *Hausdorff measure* $\mathcal{H}^{s}(E)$ by

$$\mathcal{H}^{s}(E) = \lim_{\delta \to 0} \mathcal{H}^{s}_{\delta}(E) = \sup_{\delta > 0} \mathcal{H}^{s}_{\delta}(E).$$

A decomposition for Borel measures $\mu \leq H^s$

The Hausdorff measure \mathcal{H}^s

Let $0 \leq s < +\infty$ and $E \subset \mathbb{R}^N$.

Given $0 < \delta \leq +\infty$, we define the *Hausdorff capacity* $\mathcal{H}^{s}_{\delta}(E)$ by

$$\mathcal{H}^{s}_{\delta}(E) = \inf \left\{ \sum_{n \in \mathbb{N}} \omega_{s} r_{n}^{s} : E \subset \bigcup_{n \in \mathbb{N}} B_{r_{n}}(x_{n}), 0 \leq r_{n} \leq \delta \right\}.$$

Here, $\omega_s = \frac{\pi^{\frac{s}{2}}}{\Gamma(\frac{s}{2}+1)}$.

The Hausdorff content is $\mathcal{H}^{s}_{\infty}(E)$.

We define the Hausdorff measure $\mathcal{H}^{s}(\mathsf{E})$ by

$$\mathcal{H}^{s}(E) = \lim_{\delta \to 0} \mathcal{H}^{s}_{\delta}(E) = \sup_{\delta > 0} \mathcal{H}^{s}_{\delta}(E).$$

A decomposition for Borel measures $\mu \leq H^s$

The Hausdorff measure \mathcal{H}^s

Let $0 \leq s < +\infty$ and $E \subset \mathbb{R}^N$.

Given $0 < \delta \leq +\infty$, we define the *Hausdorff capacity* $\mathcal{H}^{s}_{\delta}(E)$ by

$$\mathcal{H}^{s}_{\delta}(E) = \inf \left\{ \sum_{n \in \mathbb{N}} \omega_{s} r_{n}^{s} : E \subset \bigcup_{n \in \mathbb{N}} B_{r_{n}}(x_{n}), 0 \leq r_{n} \leq \delta \right\}.$$

Here, $\omega_s = \frac{\pi^{\frac{s}{2}}}{\Gamma(\frac{s}{2}+1)}$.

The Hausdorff content is $\mathcal{H}^{s}_{\infty}(E)$.

We define the *Hausdorff measure* $\mathcal{H}^{s}(E)$ by

$$\mathcal{H}^{s}(E) = \lim_{\delta \to 0} \mathcal{H}^{s}_{\delta}(E) = \sup_{\delta > 0} \mathcal{H}^{s}_{\delta}(E).$$

Figure: Covering an arc of circle by balls $\mathcal{H}^{s}_{\infty}(E) = 2 < \pi = \mathcal{H}^{s}(E)$

Figure: Covering a segment by balls $\mathcal{H}^{s}_{\infty}(E) = \mathcal{H}^{s}(E)$

Antoine Detaille (UCBL1 - ICJ)

A decomposition for Borel measures $\mu \leq \mathcal{H}^s$

Figure: Covering an arc of circle by balls $\mathcal{H}^{s}_{\infty}(E) = 2 < \pi = \mathcal{H}^{s}(E)$

Antoine Detaille (UCBL1 - ICJ)

A decomposition for Borel measures $\mu \leq H^s$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
Iune 2023

Figure: Covering an arc of circle by balls $\mathcal{H}^{s}_{\infty}(E) = 2 < \pi = \mathcal{H}^{s}(E)$

Figure: Covering a segment by balls $\mathcal{H}^{s}_{\infty}(E) = \mathcal{H}^{s}(E)$

Antoine Detaille (UCBL1 - ICJ)

A decomposition for Borel measures $\mu \leq H^s$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
Iune 2023

Figure: Covering an arc of circle by balls $\mathcal{H}^{s}_{\infty}(E) = 2 < \pi = \mathcal{H}^{s}(E)$

Figure: Covering a segment by balls $\mathcal{H}^{s}_{\infty}(E) = \mathcal{H}^{s}(E)$

A decomposition for Borel measures $\mu \leq H^s$

The notion of *s*-straight sets

Definition (Foran (1995))

A Borel set $E \subset \mathbb{R}^N$ is said to be *s*-straight whenever

$$\mathcal{H}^s_{\infty}(E) = \mathcal{H}^s(E) < +\infty.$$

Antoine Detaille (UCBL1 - ICJ) A deco

A decomposition for Borel measures $\mu \leq \mathcal{H}^s$

The decomposition theorem for Borel sets

Theorem (Delaware (2002))

If $E \subset \mathbb{R}^N$ *is a Borel set of finite* \mathcal{H}^s *measure, then there exists a sequence of disjoint Borel sets* $(E_n)_{n \in \mathbb{N}}$ *such that* $E = \bigcup_{n \in \mathbb{N}} E_n$ *and* E_n *is s*-straight for each $n \in \mathbb{N}$.

June 2023

5/16

Antoine Detaille (UCBL1 - ICJ) A decomposition for Borel measures $\mu \leq H^s$

From straight sets to measures

Proposition (Foran (1995))

If $E \subset \mathbb{R}^N$ *is an* s-straight Borel set, then every Borel set $A \subset E$ *is also* s-straight.

Proof

$$\mathcal{H}^{s}(E) = \mathcal{H}^{s}(A) + \mathcal{H}^{s}(E \setminus A) \geq \mathcal{H}^{s}_{\infty}(A) + \mathcal{H}^{s}_{\infty}(E \setminus A) \geq \mathcal{H}^{s}_{\infty}(E) \geq \mathcal{H}^{s}(E)$$

Hence, all inequalities are actually equalities.

Therefore, a Borel set $E \subset \mathbb{R}^N$ is *s*-straight if and only if $\mathcal{H}^s |_{_E} \leq \mathcal{H}^s_{\infty}$.

From straight sets to measures

Proposition (Foran (1995))

If $E \subset \mathbb{R}^N$ *is an* s*-straight Borel set, then every Borel set* $A \subset E$ *is also* s*-straight.*

Proof.

 $\mathcal{H}^{s}(E) = \mathcal{H}^{s}(A) + \mathcal{H}^{s}(E \setminus A) \geq \mathcal{H}^{s}_{\infty}(A) + \mathcal{H}^{s}_{\infty}(E \setminus A) \geq \mathcal{H}^{s}_{\infty}(E) \geq \mathcal{H}^{s}(E)$

Hence, all inequalities are actually equalities.

Therefore, a Borel set $E \subset \mathbb{R}^N$ is *s*-straight if and only if $\mathcal{H}^s |_{_E} \leq \mathcal{H}^s_{\infty}$.

From straight sets to measures

Proposition (Foran (1995))

If $E \subset \mathbb{R}^N$ *is an* s-straight Borel set, then every Borel set $A \subset E$ *is also* s-straight.

Proof.

$$\mathcal{H}^{s}(E) = \mathcal{H}^{s}(A) + \mathcal{H}^{s}(E \setminus A) \geq \mathcal{H}^{s}_{\infty}(A) + \mathcal{H}^{s}_{\infty}(E \setminus A) \geq \mathcal{H}^{s}_{\infty}(E) \geq \mathcal{H}^{s}(E)$$

Hence, all inequalities are actually equalities.

Therefore, a Borel set $E \subset \mathbb{R}^N$ is *s*-straight if and only if $\mathcal{H}^s |_{E} \leq \mathcal{H}^s_{\infty}$.

The condition $\mu \leq \mathcal{H}^s$ vs $\mu \leq \mathcal{H}^s_{\infty}$

If $\mu = \mathcal{H}^{s} \lfloor_{\mathcal{E}}$, then $\mu \leq \mathcal{H}^{s}$.

On the other hand, $\mu \lfloor_{E_n} \leq \mathcal{H}^s_{\infty}$.

More generally, the condition $\mu \leq \mathcal{H}^s$ is satisfied by $\mu = f\mathcal{H}^s$ with $0 \leq t \leq 1$, or by $\mu = g\mathcal{H}^t$ with t > s and $g \geq 0$.

On the other hand, $\mu \leq \mathcal{H}^s_{\infty}$ is equivalent to *an explicit density bound on* μ .

イロト イポト イヨト イヨト 二日

The condition $\mu \leq \mathcal{H}^s$ vs $\mu \leq \mathcal{H}^s_{\infty}$

- If $\mu = \mathcal{H}^{s}|_{\varepsilon}$, then $\mu \leq \mathcal{H}^{s}$.
- On the other hand, $\mu \lfloor_{E_n} \leq \mathcal{H}^s_{\infty}$.
- More generally, the condition $\mu \leq \mathcal{H}^s$ is satisfied by $\mu = f\mathcal{H}^s$ with $0 \leq t \leq 1$, or by $\mu = g\mathcal{H}^t$ with t > s and $g \geq 0$.

On the other hand, $\mu \leq \mathcal{H}_{\infty}^{s}$ is equivalent to *an explicit density bound on* μ .

From a measure inequality to a density estimate

Proposition

If $0 < \delta \leq +\infty$ and if μ is a Borel measure on \mathbb{R}^N , then $\mu \leq \mathcal{H}^s_{\delta}$ if and only if

 $\mu(B_r(x)) \leq \omega_s r^s$ for every ball $B_r(x) \subset \mathbb{R}^N$ with $0 \leq r \leq \delta$.

Proof.

If $\mu \leq \mathcal{H}^{s}_{\delta}$, then

 $\mu(B_r(x)) \leq \mathcal{H}^s_{\delta}(B_r(x)) \leq \omega_s r^s \quad \text{for every } 0 \leq r \leq \delta.$

For the converse, let $E \subset \bigcup_{n \in \mathbb{N}} B_{r_n}(x_n)$ with $0 \le r_n \le \delta$. Then,

$$\mu(E) \le \sum_{n \in \mathbb{N}} \mu(B_{r_n}(x_n)) \le \sum_{n \in \mathbb{N}} \omega_s r_n^s.$$

Antoine Detaille (UCBL1 - ICJ)

A decomposition for Borel measures $\mu \leq H^s$

From a measure inequality to a density estimate

Proposition

If $0 < \delta \leq +\infty$ and if μ is a Borel measure on \mathbb{R}^N , then $\mu \leq \mathcal{H}^s_{\delta}$ if and only if

 $\mu(B_r(x)) \leq \omega_s r^s$ for every ball $B_r(x) \subset \mathbb{R}^N$ with $0 \leq r \leq \delta$.

Proof.

If $\mu \leq \mathcal{H}^{s}_{\delta}$, then

 $\mu(B_r(x)) \leq \mathcal{H}^s_{\delta}(B_r(x)) \leq \omega_s r^s \quad \text{for every } 0 \leq r \leq \delta.$

For the converse, let $E \subset \bigcup_{n \in \mathbb{N}} B_{r_n}(x_n)$ with $0 \le r_n \le \delta$. Then,

$$\mu(E) \leq \sum_{n \in \mathbb{N}} \mu(B_{r_n}(x_n)) \leq \sum_{n \in \mathbb{N}} \omega_s r_n^s.$$

Antoine Detaille (UCBL1 - ICJ)

A decomposition for Borel measures $\mu \leq H^s$

П

The decomposition theorem for Borel measures

Theorem (D. and Ponce (2023))

If μ is a finite Borel measure on \mathbb{R}^N such that $\mu \leq \mathcal{H}^s$, then there exists a sequence of disjoint Borel sets $(E_n)_{n \in \mathbb{N}}$ such that $\mathbb{R}^N = \bigcup_{n \in \mathbb{N}} E_n$ and, for every $n \in \mathbb{N}$,

$$\mu \mid_{E_n} \leq \mathcal{H}^{\mathbf{s}}_{\infty}.$$

Antoine Detaille (UCBL1 - ICJ) A decomposition for Borel measures $\mu \leq \mathcal{H}^s$ June 2023

An application: an existence result for a Dirichlet problem

Consider the problem

$$\begin{cases} -\Delta u + (e^u - 1) = \nu & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$
(1)

where ν satisfies the condition

$$\nu \le 4\pi \mathcal{H}^{N-2}.$$
 (C)

Theorem (Vázquez (1983), Bartolucci, Leoni, Orsina, and Ponce (2005))

Let $N \ge 2$ and $\Omega \subset \mathbb{R}^N$ be a smooth bounded open set. If v is a finite measure in Ω that satisfies (C), then there exists a function u in the Sobolev space $W_0^{1,1}(\Omega)$ such that $e^u \in L^1(\Omega)$ and

 $-\Delta u + (e^u - 1) = v$ in the sense of distributions in Ω .

June 2023

An application: an existence result for a Dirichlet problem

Consider the problem

$$\begin{cases} -\Delta u + (e^u - 1) = \nu & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$
(P)

where ν satisfies the condition

$$\nu \le 4\pi \mathcal{H}^{N-2}.$$
 (C)

Theorem (Vázquez (1983), Bartolucci, Leoni, Orsina, and Ponce (2005))

Let $N \ge 2$ and $\Omega \subset \mathbb{R}^N$ be a smooth bounded open set. If v is a finite measure in Ω that satisfies (C), then there exists a function u in the Sobolev space $W_0^{1,1}(\Omega)$ such that $e^u \in L^1(\Omega)$ and

 $-\Delta u + (e^u - 1) = v$ in the sense of distributions in Ω .

A first step: when the measure satisfies a density bound

Lemma

The theorem holds when $\nu \leq \alpha \mathcal{H}_{\delta}^{N-2}$ for some $\alpha < 4\pi$ and $0 < \delta \leq +\infty$.

This stronger assumption implies that

 $\mathbf{e}^{\mathcal{N}\nu}\in L^1_{\mathrm{loc}}(\mathbb{R}^N).$

First solve the regularized equation

$$\begin{cases} -\Delta u_k + (e^{u_k} - 1) = \rho_k * \nu & \text{in } \Omega, \\ u_k = 0 & \text{on } \partial \Omega. \end{cases}$$

Then pass to the limit $k \to +\infty$ using properties of Dirichlet problems with an absorption term.

Antoine Detaille (UCBL1 - ICJ)

A decomposition for Borel measures $\mu \leq \mathcal{H}^s$

June 2023

A first step: when the measure satisfies a density bound

Lemma

The theorem holds when $\nu \leq \alpha \mathcal{H}_{\delta}^{N-2}$ for some $\alpha < 4\pi$ and $0 < \delta \leq +\infty$.

This stronger assumption implies that

$$e^{\mathcal{N}\nu} \in L^1_{\text{loc}}(\mathbb{R}^N).$$

First solve the regularized equation

$$\begin{cases} -\Delta u_k + (\mathrm{e}^{u_k} - 1) = \rho_k * \nu & \text{in } \Omega, \\ u_k = 0 & \text{on } \partial \Omega. \end{cases}$$

Then pass to the limit $k \to +\infty$ using properties of Dirichlet problems with an absorption term.

Antoine Detaille (UCBL1 - ICJ)

A decomposition for Borel measures $\mu \leq H^s$

June 2023

A first step: when the measure satisfies a density bound

Lemma

The theorem holds when $\nu \leq \alpha \mathcal{H}_{\delta}^{N-2}$ for some $\alpha < 4\pi$ and $0 < \delta \leq +\infty$.

This stronger assumption implies that

$$e^{\mathcal{N}\nu} \in L^1_{\text{loc}}(\mathbb{R}^N).$$

First solve the regularized equation

$$\begin{cases} -\Delta u_k + (e^{u_k} - 1) = \rho_k * \nu & \text{in } \Omega, \\ u_k = 0 & \text{on } \partial \Omega. \end{cases}$$

Then pass to the limit $k \to +\infty$ using properties of Dirichlet problems with an absorption term.

Antoine Detaille (UCBL1 - ICJ)

June 2023

A localized version of the decomposition theorem

Lemma

If $\mu \leq \mathcal{H}^s$, then there exist a non-increasing sequence of open sets $(U_j)_{j \in \mathbb{N}}$ and a sequence of positive numbers $(\delta_j)_{j \in \mathbb{N}}$ such that $\mu(U_j) \to 0$ and

 $\mu \mid_{\mathbb{R}^N \setminus U_j} \leq \mathcal{H}^s_{\delta_i} \quad \text{for every } j \in \mathbb{N}.$

Pick $(\beta_j)_{j \in \mathbb{N}}$ increasing to 1, and solve the truncated equation

$$\begin{cases} -\Delta u_j + (\mathbf{e}^{u_j} - 1) = \beta_j \nu \lfloor_{\mathbb{R}^N \setminus U_j} & \text{in } \Omega, \\ u_j = 0 & \text{on } \partial \Omega. \end{cases}$$

Then pass to the limit $j \rightarrow +\infty$ using monotonicity.

ヘロン 人間 とくほ とくほ とう

A localized version of the decomposition theorem

Lemma

If $\mu \leq \mathcal{H}^s$, then there exist a non-increasing sequence of open sets $(U_j)_{j \in \mathbb{N}}$ and a sequence of positive numbers $(\delta_j)_{j \in \mathbb{N}}$ such that $\mu(U_j) \to 0$ and

$$\mu \mid_{\mathbb{R}^N \setminus U_j} \leq \mathcal{H}^s_{\delta_j} \quad \text{for every } j \in \mathbb{N}.$$

Pick $(\beta_j)_{j \in \mathbb{N}}$ increasing to 1, and solve the truncated equation

$$\begin{cases} -\Delta u_j + (\mathrm{e}^{u_j} - 1) = \beta_j \nu \lfloor_{\mathbb{R}^N \setminus U_j} & \text{in } \Omega, \\ u_j = 0 & \text{on } \partial \Omega. \end{cases}$$

Then pass to the limit $j \rightarrow +\infty$ using monotonicity.

A localized version of the decomposition theorem

Lemma

If $\mu \leq \mathcal{H}^s$, then there exist a non-increasing sequence of open sets $(U_j)_{j \in \mathbb{N}}$ and a sequence of positive numbers $(\delta_j)_{j \in \mathbb{N}}$ such that $\mu(U_j) \to 0$ and

$$\mu \mid_{\mathbb{R}^N \setminus U_j} \leq \mathcal{H}^s_{\delta_j} \quad \text{for every } j \in \mathbb{N}.$$

Pick $(\beta_j)_{j \in \mathbb{N}}$ increasing to 1, and solve the truncated equation

$$\begin{cases} -\Delta u_j + (\mathrm{e}^{u_j} - 1) = \beta_j \nu \lfloor_{\mathbb{R}^N \setminus U_j} & \text{in } \Omega, \\ u_j = 0 & \text{on } \partial \Omega. \end{cases}$$

Then pass to the limit $j \rightarrow +\infty$ using monotonicity.

Thank you for your attention !

Antoine Detaille (UCBL1 - ICJ)

A decomposition for Borel measures $\mu \leq \mathcal{H}^s$

June 2023

The crucial step to the proof: an extraction result

Proposition

If μ is a nonzero finite Borel measure on \mathbb{R}^N satisfying $\mu \leq \mathcal{H}^s$, then there exists a Borel set $E \subset \mathbb{R}^N$ such that $\mu(E) > 0$ and $\mu|_E \leq \mathcal{H}^s_{\infty}$.

Proof of the main theorem: by exhaustion.

Antoine Detaille (UCBL1 - ICJ)

A decomposition for Borel measures $\mu \leq H^s$

June 2023

The crucial step to the proof: an extraction result

Proposition

If μ is a nonzero finite Borel measure on \mathbb{R}^N satisfying $\mu \leq \mathcal{H}^s$, then there exists a Borel set $E \subset \mathbb{R}^N$ such that $\mu(E) > 0$ and $\mu|_{\varepsilon} \leq \mathcal{H}^s_{\infty}$.

Proof of the main theorem: by exhaustion.

Precise density bound

Proposition

If μ is a finite Borel measure on \mathbb{R}^N satisfying $\mu \leq \mathcal{H}^s$, then, for every $\varepsilon > 0$, there exists a Borel set $A \subset \mathbb{R}^N$ such that (1) for every $\beta > 1$, there exists $\delta > 0$ such that $\mu \downarrow_A \leq \beta \mathcal{H}^s_{\delta}$, (2) $\mu(\mathbb{R}^N \setminus A) \leq \varepsilon$.

The construction of the extracted set E

- Pick well-chosen sequences $(\varepsilon_j)_{j \in \mathbb{N}}$ and $(r_j)_{j \in \mathbb{N}}$ decreasing to 0.
- For each $j \in \mathbb{N}_*$, partition

with diam $A_{i,j} \leq r_{j+1}$. • Extract $E_{i,j} \subset A_{i,j}$ with

$$A=\bigcup_{i\in\mathbb{N}}A_{i,j},$$

June 2023

$$\mu(E_{i,j}) = (1 - \varepsilon_{j-1})\mu(A_{i,j}).$$

• Set

$$E = \bigcap_{j \in \mathbb{N}_*} \bigcup_{i \in \mathbb{N}} E_{i,j}.$$

Antoine Detaille (UCBL1 - ICJ)

A decomposition for Borel measures $\mu \leq H^s$