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Sobolev spaces with values into manifolds

Let 𝒩 be a smooth compact Riemannian manifold, isometrically embedded in ℝ𝜈.
Let 𝛺 ⊂ ℝm be a smooth bounded open set, 1 ≤ p < +∞, and 0 < s < +∞.

Definition

W s,p(𝛺;𝒩) = {u ∈ W s,p(𝛺;ℝ𝜈): u(x) ∈ 𝒩 for almost every x ∈ 𝛺}
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Reminder: classical Sobolev spaces

Let s = k + 𝜎 with k ∈ ℕ and 𝜎 ∈ [0, 1).

W k ,p(𝛺) = {u ∈ Lp(𝛺):Dju ∈ Lp(𝛺) for every j ∈ {1, . . . , k}}

If 𝜎 ∈ (0, 1),
W 𝜎,p(𝛺) =

{
u ∈ Lp(𝛺):

∫
𝛺

∫
𝛺

|u(x) − u(y)|p
|x − y |m+𝜎p dx dy < +∞

}
.

If k ≥ 1,
W s,p(𝛺) = {u ∈ W k ,p(𝛺):Dku ∈ W 𝜎,p(𝛺)}.
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A few applications

Applications in problems from physics: liquid crystals (𝕊2, ℝℙ2), supraconductivity
(Ginzburg-Landau, 𝕊1), biaxial liquid crystals, superfluid helium. . .

Applications in problems from numerical methods: meshing domains.

Figure: A field of liquid crystals
(Wikimedia Commons under licence CC-BY-SA 3.0 Unported)

Figure: Meshing the earth (see the Hextreme
project: www.hextreme.eu)
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The strong density problem

Theorem

C∞(𝛺) is dense in W s,p(𝛺)

Question

Is C∞(𝛺;𝒩) dense in W s,p(𝛺;𝒩)?
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A topological obstruction

For 2 ≤ p < 3, the map u0 ∈ W1,p(𝔹3;𝕊2) defined by

u0(x) =
x
|x |

cannot be approached by maps in C∞(𝔹3;𝕊2).
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A topological obstruction: proof

By contradiction: assume that (un)n∈ℕ∗ in C∞(𝔹3;𝕊2), un → u0 in W1,p.
Genericity argument: up to extraction,

un |𝜕B3
r

W1,p

−−−→ u0 |𝜕B3
r

for a. e. 0 < r < 1. (1)

This comes from a Fubini–Tonelli-type argument:∫
𝔹3

=

∫ 1

0

(∫
𝜕B3

r

)
dr .

Now, Morrey–Sobolev implies that the convergence in (1) is uniform. But un |𝜕B3
r
∼ cte,

while u0 |𝜕B3
r
/ cte, a contradiction.
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A topological obstruction

For 2 ≤ p < 3, the map u0 ∈ W1,p(𝔹3;𝕊2) defined by

u0(x) = id𝕊2

(
x
|x |

)
cannot be approached by maps in C∞(𝔹3;𝕊2).

Theorem (Schoen and Uhlenbeck (1983), Bethuel and Zheng (1988), Escobedo (1988))

Assume that sp < m. If C∞(𝛺;𝒩) is dense in W s,p(𝛺;𝒩), then 𝜋⌊sp⌋(𝒩) = {0}.
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The strong density theorem

Theorem

If sp < m, then the class C∞(𝔹m;𝒩) is dense in W s,p(𝔹m;𝒩) if and only if 𝜋⌊sp⌋(𝒩) = {0}.

Case s = 1: Bethuel (1991), method of good and bad cubes;
Case 0 < s < 1: Brezis and Mironescu (2015), method of homogeneous extension;
Case s = 2, 3, . . . : Bousquet, Ponce, and Van Schaftingen (2015), method of good and
bad cubes plus new tools for higher order spaces;
Case s > 1 non-integer: D. (2023), method of good and bad cubes plus new tools for
higher order spaces plus new ideas for fractional estimates.

The case of a general domain was understood by Hang and Lin (2003).

Antoine Detaille (UCBL1 — ICJ) Sobolev mappings to manifolds The 12th of November 2024 9 / 22



A simpler proof in a special case?

Assume that 𝒩 = 𝕊1. Exploit the fact that maps into the sphere have a phase.
Write u = ei𝜃, with 𝜃 : 𝔹m → ℝ.

By classical density theorem, get smooth maps 𝜃n : 𝔹
m → ℝ with 𝜃n → 𝜃.

By composition, un = ei𝜃n → u.

Two problems: (i) we need that Sobolev maps have a Sobolev phase, and (ii) we need
continuity of the composition operator.
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A more general framework: coverings and liftings

Definition
We say that 𝜋 : 𝒩 → 𝒩 is a Riemannian covering whenever, for
every x ∈ 𝒩, there exists an open neighborhood U ⊂ 𝒩 of x such
that 𝜋−1(U) is a disjoint union of open sets on which 𝜋 restricts to
an isometry.

Examples:
𝜋 : ℝn → 𝕋n, 𝜋(𝜃1 , . . . , 𝜃n) = (ei𝜃1 , . . . , ei𝜃n);
𝜋 : 𝕊2 → ℝℙ2, 𝜋(x) = [x].

Figure: Hatcher (2002)
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The lifting problem

Theorem
If 𝜋 : 𝒩 → 𝒩 is a Riemannian covering, then any continuous map u : 𝔹m → 𝒩 admits a
continuous lifting ũ : 𝔹m → 𝒩, i.e., such that u = 𝜋 ◦ ũ.

𝒩̃

𝔹m
𝒩

𝜋
∃? ũ

u

Question

Does every u ∈ W s,p(𝔹m;𝒩) have a lifting ũ ∈ W s,p(𝔹m;𝒩)?
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Why do we care about liftings?

Going from 𝒩 to 𝒩 allows to work with a simpler target.

A (non-exhaustive) list of applications:
Energy bounds for Ginzburg–Landau (Bourgain, Brezis, and Mironescu (2000));
Density problems and classification of homotopy classes for Sobolev mappings to the
circle (Brezis, Mironescu (2001));
Weak density in W1,2 (Pakzad and Rivière (2003));
Study of liquid crystals (Ball, Zarnescu (2011));
Extension of traces (Mironescu and Van Schaftingen (2021)).
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The topological obstruction strikes back

For 1 ≤ p < 2, the map u0 ∈ W1,p(𝔹2;𝕊1) defined by

u0(x) =
x
|x |

has no lifting ũ ∈ W1,p(𝔹2;ℝ).

By contradiction: assume it has a lifting ũ0 ∈ W1,p(𝔹2;ℝ).

Genericity argument: for a.e. 0 < r < 1, ũ0 |𝜕B2
r
∈ W1,p and is a lifting of u0 |𝜕B2

r
.

This contradicts the fact that id𝕊1 : 𝕊1 → 𝕊1 has no continuous lifting.
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Topological obstruction to lifting: the general case

Theorem (Bourgain, Brezis, and Mironescu (2000), Bethuel and Chiron (2007))
If 0 < s < +∞ and 1 ≤ p < +∞ are such that 1 ≤ sp < 2, then there exists a map
u ∈ W s,p(𝔹m;𝒩) that has no lifting ũ ∈ W s,p(𝔹m;𝒩). (Assuming m ≥ 2 and that the
covering is non-trivial.)
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Existence of the lifting when s ≥ 1

Theorem (Bourgain, Brezis, and Mironescu (2000), Bethuel and Chiron (2007))
If s ≥ 1 and p ≥ 1 are such that sp ≥ 2, then every u ∈ W s,p(𝔹m;𝒩) has a lifting
ũ ∈ W s,p(𝔹m;𝒩).

Here, 𝒩 is assumed to be embedded into ℝ𝜈̃. When s > 1, a mild assumption about this
embedding is required.
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Why one should be careful about the embedding 𝒩̃ ⊂ ℝ𝜈̃

Define j(t) = (t , e−t cos et , e−t sin et).

Then, 𝒩 = j(ℝ) is a covering of 𝕊1.

If m > 2p, then there exists a map u ∈ W2,p(𝔹m;𝕊1) which has
no lifting ũ ∈ W2,p(𝔹m;𝒩) (D. (2022)).
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The composition theorem

Theorem (Brezis and Mironescu (2001), Maz’ya and Shaposhnikova (2002))
Let m = s if s ∈ ℕ, m = ⌊s⌋ + 1 otherwise. If f is a Cm function such that f , f ′, . . . , fm ∈ L∞,
then the operator u ↦→ f (u) is continuous from W s,p ∩ W1,sp to W s,p.

For W s,p ∩ L∞, this theorem was already known before (see the historical remarks in
Brezis and Mironescu’s paper).
However, for the application for lifting, asking ũ ∈ L∞ is too much.
On the other hand, ũ ∈ W1,sp is automatic if the lifting exists.
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About the proof of the composition theorem I
An unsuccessful natural strategy

We have to prove that D(f (u)) = f ′(u)Du ∈ W s−1,p.

Assume 1 < s < 2, let s = 1 + 𝜎. We have V = f ′(u) ∈ W 𝜎, 1+𝜎
𝜎 p ∩ L∞ by interpolation, and

U = Du ∈ W 𝜎,p ∩ L(1+𝜎)p.

However, trying to prove that the product belongs to W 𝜎,p by the standard trick

|U(x + h)V (x + h) − U(x)V (x)| ≤ |U(x + h) − U(x)| |V (x + h)| + |U(x)| |V (x + h) − V (x)|

and Hölder leads to the divergent integral∫
ℝm

∫
ℝm

|U(x)|(1+𝜎)p
|h|m dx dh.
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About the proof of the composition theorem II
A microscopic improvement in the Triebel–Lizorkin scale saves the game

Instead, we work with the refined Triebel–Lizorkin scale Fs
p,q.

In particular, Fs
p,p = W s,p for noninteger s, and Fs

p,q1 ⊂ Fs
p,q2 if q1 ≤ q2.

By a microscopic improvement in Gagliardo–Nirenberg inequality, we actually have
f ′(u) ∈ F𝜎

1+𝜎
𝜎 p,p

.

This improvement is magnified by the Runst–Sickel lemma: if
0 < 1

p = 1
p1

+ 1
r2 = 1

p2
+ 1

r1 < 1, f ∈ Fs
p1 ,q ∩ Lr1 , g ∈ Fs

p2 ,q ∩ Lr2 , then fg ∈ Fs
p,q.
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Back to strong density: a rigorous proof at last

Assume that s ≥ 1 and that sp ≥ 2. Let u ∈ W s,p(𝔹m;𝕊1).

We have proved the existence of 𝜃 ∈ W s,p(𝔹m;ℝ) ∩ W1,sp(𝔹m;ℝ) such that u = ei𝜃.

By the classical density theorem, there exist 𝜃n ∈ C∞(𝔹m;ℝ) such that 𝜃n → 𝜃 in
W s,p ∩ W1,sp.

By the composition theorem, ei𝜃n → u in W s,p.

Actually, the same argument also works for 𝕋n.
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Thank you for your attention!
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