Density problems for Sobolev maps into manifolds

Antoine Detaille

Université Claude Bernard Lyon 1 — Institut Camille Jordan

The 2nd of June 2025

Antoine Detaille (UCBL1 — ICJ)

Density problems for Sobolev maps into manifolds

< □ ▷ < □ ▷ < Ξ ▷ < Ξ ▷
The 2nd of June 2025

Sobolev spaces with values into manifolds

Let \mathcal{N} be a smooth compact Riemannian manifold, isometrically embedded in \mathbb{R}^{ν} . Let \mathcal{M} be a smooth compact Riemannian manifold of dimension m, and $1 \le p < +\infty$. Definition

 $W^{1,p}(\mathcal{M};\mathcal{N}) = \{ u \in W^{1,p}(\mathcal{M};\mathbb{R}^{\nu}) : u(x) \in \mathcal{N} \text{ for almost every } x \in \mathcal{M} \}$

Applications in physics: liquid crystals (\mathbb{S}^2 , \mathbb{RP}^2), supraconductivity (Ginzburg–Landau, \mathbb{S}^1), biaxial liquid crystals, superfluid helium...

Applications in numerical methods: meshing domains, see project Hextreme.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Sobolev spaces with values into manifolds

Let \mathcal{N} be a smooth compact Riemannian manifold, isometrically embedded in \mathbb{R}^{ν} . Let \mathcal{M} be a smooth compact Riemannian manifold of dimension m, and $1 \le p < +\infty$. Definition

 $W^{1,p}(\mathcal{M};\mathcal{N}) = \{ u \in W^{1,p}(\mathcal{M};\mathbb{R}^{\nu}) : u(x) \in \mathcal{N} \text{ for almost every } x \in \mathcal{M} \}$

Applications in physics: liquid crystals (\mathbb{S}^2 , \mathbb{RP}^2), supraconductivity (Ginzburg–Landau, \mathbb{S}^1), biaxial liquid crystals, superfluid helium...

Applications in numerical methods: meshing domains, see project *Hextreme*.

ヘロン 人間 とくほ とくほ とう

The strong density problem

Theorem

The space $C^{\infty}(\mathcal{M})$ is dense in $W^{1,p}(\mathcal{M})$.

Question

Is $C^{\infty}(\mathcal{M}; \mathcal{N})$ dense in $W^{1,p}(\mathcal{M}; \mathcal{N})$?

Antoine Detaille (UCBL1 — ICJ)

Density problems for Sobolev maps into manifolds

э

The strong density problem

Theorem

The space $C^{\infty}(\mathcal{M})$ is dense in $W^{1,p}(\mathcal{M})$.

Question

Is $C^{\infty}(\mathcal{M}; \mathcal{N})$ dense in $W^{1,p}(\mathcal{M}; \mathcal{N})$?

Antoine Detaille (UCBL1 — ICJ)

Density problems for Sobolev maps into manifolds

▲ □ ▶ ▲ ⓓ ▶ ▲ ≧ ▶ ▲ ≧ ▶ The 2nd of June 2025

The strong density theorem

Theorem (Bethuel (1991))

Assume that p < m. Then, $C^{\infty}(\overline{\mathbb{B}^m}; \mathcal{N})$ is dense in $W^{1,p}(\mathbb{B}^m; \mathcal{N})$ if and only if $\pi_{|p|}(\mathcal{N}) = \{0\}$.

Extensions to $W^{s,p}$: Brezis and Mironescu (2015, 0 < s < 1); Bousquet, Ponce, and Van Schaftingen (2015, s = 2, 3, ...); D. (2023, s > 1 noninteger).

The case where \mathcal{M} is topologically non-trivial was explored by Hang and Lin (2003).

Typical obstruction: u(x) = f(x/|x|), where $f: \mathbb{S}^{\lfloor p \rfloor} \to \mathcal{N}$ is not homotopic to a constant.

The strong density theorem

Theorem (Bethuel (1991))

Assume that p < m. Then, $C^{\infty}(\overline{\mathbb{B}^m}; \mathcal{N})$ is dense in $W^{1,p}(\mathbb{B}^m; \mathcal{N})$ if and only if $\pi_{|p|}(\mathcal{N}) = \{0\}$.

Extensions to $W^{s,p}$: Brezis and Mironescu (2015, 0 < s < 1); Bousquet, Ponce, and Van Schaftingen (2015, s = 2, 3, ...); D. (2023, s > 1 noninteger).

The case where \mathcal{M} is topologically non-trivial was explored by Hang and Lin (2003).

Typical obstruction: u(x) = f(x/|x|), where $f: \mathbb{S}^{\lfloor p \rfloor} \to \mathcal{N}$ is not homotopic to a constant.

The strong density theorem

Theorem (Bethuel (1991))

Assume that p < m. Then, $C^{\infty}(\overline{\mathbb{B}^m}; \mathcal{N})$ is dense in $W^{1,p}(\mathbb{B}^m; \mathcal{N})$ if and only if $\pi_{|p|}(\mathcal{N}) = \{0\}$.

Extensions to $W^{s,p}$: Brezis and Mironescu (2015, 0 < s < 1); Bousquet, Ponce, and Van Schaftingen (2015, s = 2, 3, ...); D. (2023, s > 1 noninteger).

The case where \mathcal{M} is topologically non-trivial was explored by Hang and Lin (2003).

Typical obstruction: u(x) = f(x/|x|), where $f: S^{\lfloor p \rfloor} \to \mathcal{N}$ is not homotopic to a constant.

Never think that a topic is exhausted!

Some of the (many) possible further questions:

- When $C^{\infty}(\mathcal{M}; \mathcal{N})$ is not dense in $W^{1,p}(\mathcal{M}; \mathcal{N})$, can we characterize $\overline{C^{\infty}(\mathcal{M}; \mathcal{N})}^{W^{1,p}}$?
- Can we find a nice class of "almost smooth maps" that would always be dense?
- Do we recover density if we weaken the notion of convergence?

Characterizing the closure of smooth maps

A good starting point: the Jacobian.

Let $u \in W^{1,2}(\mathbb{B}^3; \mathbb{S}^2)$. We want to define $Ju = d(u^{\sharp}\omega_{\mathbb{S}^2})$.

This is well-defined in the sense of distributions:

$$\langle Ju, \alpha \rangle = -\int_{\mathbb{B}^3} \mathrm{d}\alpha \wedge u^{\sharp} \omega_{\mathbb{S}^2} \quad \text{for every } \alpha \in C^{\infty}_{\mathrm{c}}(\mathbb{B}^3).$$

Let us compute Ju_0 , where $u_0(x) = \frac{x}{|x|}$.

イロト イヨト イヨト イヨト

Characterizing the closure of smooth maps

A good starting point: the Jacobian.

Let $u \in W^{1,2}(\mathbb{B}^3; \mathbb{S}^2)$. We want to define $Ju = d(u^{\sharp}\omega_{\mathbb{S}^2})$.

This is well-defined in the sense of distributions:

$$\langle Ju, \alpha \rangle = -\int_{\mathbb{B}^3} \mathrm{d}\alpha \wedge u^{\sharp} \omega_{\mathbb{S}^2} \quad \text{for every } \alpha \in C^{\infty}_{\mathrm{c}}(\mathbb{B}^3).$$

Let us compute Ju_0 , where $u_0(x) = \frac{x}{|x|}$.

御 とく ヨ とく ヨ と

A Jacobian computation

By the Leibniz rule, away from 0,

$$\mathsf{d}(\alpha \wedge u^{\sharp}\omega_{\mathbf{S}^{2}}) = \mathsf{d}\alpha \wedge u^{\sharp}\omega_{\mathbf{S}^{2}} + (-1)^{*}\alpha \wedge \mathsf{d}(u^{\sharp}\omega_{\mathbf{S}^{2}}) = \mathsf{d}\alpha \wedge u^{\sharp}\omega_{\mathbf{S}^{2}}.$$

By Stokes's formula,

$$\langle Ju_0, \alpha \rangle = -\lim_{\varepsilon \to 0} \int_{\mathbb{B}^3 \setminus B^3_{\varepsilon}} \mathsf{d}(\alpha \wedge u_0^{\sharp} \omega_{\mathbb{S}^2}) = \lim_{\varepsilon \to 0} \int_{\partial B^3_{\varepsilon}} \alpha \wedge u_0^{\sharp} \omega_{\mathbb{S}^2}.$$

Since α is smooth and u_0 is homogeneous,

$$\int_{\partial B^3_{\varepsilon}} \alpha \wedge u_0^{\sharp} \omega_{\mathbb{S}^2} \approx \alpha(0) \int_{\partial B^3_{\varepsilon}} u_0^{\sharp} \omega_{\mathbb{S}^2} = \alpha(0) \int_{\mathbb{S}^2} \omega_{\mathbb{S}^2} = 4\pi\alpha(0).$$

Density problems for Sobolev maps into manifolds

э

イロト 人間 とくほ とくほう

A Jacobian computation

By the Leibniz rule, away from 0,

$$\mathsf{d}(\alpha \wedge u^{\sharp}\omega_{\mathbf{S}^{2}}) = \mathsf{d}\alpha \wedge u^{\sharp}\omega_{\mathbf{S}^{2}} + (-1)^{*}\alpha \wedge \mathsf{d}(u^{\sharp}\omega_{\mathbf{S}^{2}}) = \mathsf{d}\alpha \wedge u^{\sharp}\omega_{\mathbf{S}^{2}}.$$

By Stokes's formula,

$$\langle Ju_0, \alpha \rangle = -\lim_{\varepsilon \to 0} \int_{\mathbb{B}^3 \setminus B^3_{\varepsilon}} \mathsf{d}(\alpha \wedge u_0^{\sharp} \omega_{\mathbb{S}^2}) = \lim_{\varepsilon \to 0} \int_{\partial B^3_{\varepsilon}} \alpha \wedge u_0^{\sharp} \omega_{\mathbb{S}^2}.$$

Since α is smooth and u_0 is homogeneous,

$$\int_{\partial B^3_{\varepsilon}} \alpha \wedge u_0^{\sharp} \omega_{\mathbb{S}^2} \approx \alpha(0) \int_{\partial B^3_{\varepsilon}} u_0^{\sharp} \omega_{\mathbb{S}^2} = \alpha(0) \int_{\mathbb{S}^2} \omega_{\mathbb{S}^2} = 4\pi\alpha(0).$$

э

7/11

イロト 人間 とくほ とくほう

A Jacobian computation

By the Leibniz rule, away from 0,

$$\mathsf{d}(\alpha \wedge u^{\sharp}\omega_{\mathbf{S}^{2}}) = \mathsf{d}\alpha \wedge u^{\sharp}\omega_{\mathbf{S}^{2}} + (-1)^{*}\alpha \wedge \mathsf{d}(u^{\sharp}\omega_{\mathbf{S}^{2}}) = \mathsf{d}\alpha \wedge u^{\sharp}\omega_{\mathbf{S}^{2}}.$$

By Stokes's formula,

$$\langle Ju_0, \alpha \rangle = -\lim_{\varepsilon \to 0} \int_{\mathbb{B}^3 \setminus B^3_{\varepsilon}} \mathsf{d}(\alpha \wedge u_0^{\sharp} \omega_{\mathbf{S}^2}) = \lim_{\varepsilon \to 0} \int_{\partial B^3_{\varepsilon}} \alpha \wedge u_0^{\sharp} \omega_{\mathbf{S}^2}.$$

Since α is smooth and u_0 is homogeneous,

$$\int_{\partial B^3_{\varepsilon}} \alpha \wedge u_0^{\sharp} \omega_{\mathbb{S}^2} \approx \alpha(0) \int_{\partial B^3_{\varepsilon}} u_0^{\sharp} \omega_{\mathbb{S}^2} = \alpha(0) \int_{\mathbb{S}^2} \omega_{\mathbb{S}^2} = 4\pi\alpha(0).$$

э

イロト 人間 とくほ とくほう

Characterizing the closure of smooth maps with the Jacobian

We have computed that $Ju_0 = 4\pi\delta_0$.

On the other hand, if $u \in \overline{C^{\infty}(\overline{\mathbb{B}^3}; \mathbb{S}^2)}^{W^{1,2}}$, then Ju = 0.

Theorem (Bethuel (1990))

$$\overline{C^{\infty}(\overline{\mathbb{B}^3}; \mathbb{S}^2)}^{W^{1,2}} = \{ u \in W^{1,2}(\mathbb{B}^3; \mathbb{S}^2) : Ju = 0 \}$$

Antoine Detail	le (UCBL1 –	– ICJ)
----------------	-------------	--------

Density problems for Sobolev maps into manifolds

Characterizing the closure of smooth maps with the Jacobian

We have computed that $Ju_0 = 4\pi\delta_0$.

On the other hand, if
$$u \in \overline{C^{\infty}(\overline{\mathbb{B}^3}; \mathbb{S}^2)}^{W^{1,2}}$$
, then $Ju = 0$.

Theorem (Bethuel (1990))

$$\overline{C^{\infty}(\overline{\mathbb{B}^3};\mathbb{S}^2)}^{W^{1,2}} = \{ u \in W^{1,2}(\mathbb{B}^3;\mathbb{S}^2) : Ju = 0 \}$$

Antoine Detail	lle (UCBI	$L_1 - ICJ$
----------------	-----------	-------------

The 2nd of June 2025 8 / 11

A D A A B A B A B A

Characterizing the closure of smooth maps with the Jacobian

We have computed that $Ju_0 = 4\pi\delta_0$.

On the other hand, if
$$u \in \overline{C^{\infty}(\overline{\mathbb{B}^3}; \mathbb{S}^2)}^{W^{1,2}}$$
, then $Ju = 0$.

Theorem (Bethuel (1990))

$$\overline{C^{\infty}(\overline{\mathbb{B}^3};\mathbb{S}^2)}^{W^{1,2}} = \{ u \in W^{1,2}(\mathbb{B}^3;\mathbb{S}^2) : Ju = 0 \}$$

Antoine Detail	lle (UCBI	$L_1 - ICJ$
----------------	-----------	-------------

A (1) > (1)

- Identify the topological singularities as the boundary of the graph of the map in the sense of distributions; see Giaquinta, Modica, Souček, and collaborators.
- Define Sing *u* as a flat chain with values into a group; see Pakzad and Rivière; and Canevari and Orlandi.
- Identify the topological singularities using *scans*; see Hardt and Rivière.
- Extension to *W*^{*s,p*} with 0 < *s* < 1; see Bourgain, Brezis, and Mironescu; Bousquet and Mironescu; Mucci; and D., Mironescu, and Xiao.

The problem is still widely open.

ヘロン 人間 とくほ とくほ とう

- Identify the topological singularities as the boundary of the graph of the map in the sense of distributions; see Giaquinta, Modica, Souček, and collaborators.
- Define Sing *u* as a flat chain with values into a group; see Pakzad and Rivière; and Canevari and Orlandi.
- Identify the topological singularities using *scans*; see Hardt and Rivière.
- Extension to *W*^{*s,p*} with 0 < *s* < 1; see Bourgain, Brezis, and Mironescu; Bousquet and Mironescu; Mucci; and D., Mironescu, and Xiao.

The problem is still widely open.

イロン スポン イヨン イヨン 三日

- Identify the topological singularities as the boundary of the graph of the map in the sense of distributions; see Giaquinta, Modica, Souček, and collaborators.
- Define Sing *u* as a flat chain with values into a group; see Pakzad and Rivière; and Canevari and Orlandi.
- Identify the topological singularities using *scans*; see Hardt and Rivière.
- Extension to *W*^{*s*,*p*} with 0 < *s* < 1; see Bourgain, Brezis, and Mironescu; Bousquet and Mironescu; Mucci; and D., Mironescu, and Xiao.

The problem is still widely open.

イロン スポン イヨン イヨン 三日

- Identify the topological singularities as the boundary of the graph of the map in the sense of distributions; see Giaquinta, Modica, Souček, and collaborators.
- Define Sing *u* as a flat chain with values into a group; see Pakzad and Rivière; and Canevari and Orlandi.
- Identify the topological singularities using *scans*; see Hardt and Rivière.
- Extension to *W*^{*s,p*} with 0 < *s* < 1; see Bourgain, Brezis, and Mironescu; Bousquet and Mironescu; Mucci; and D., Mironescu, and Xiao.

The problem is still widely open.

・ロン (雪) (日) (日) [日)

- Identify the topological singularities as the boundary of the graph of the map in the sense of distributions; see Giaquinta, Modica, Souček, and collaborators.
- Define Sing *u* as a flat chain with values into a group; see Pakzad and Rivière; and Canevari and Orlandi.
- Identify the topological singularities using *scans*; see Hardt and Rivière.
- Extension to *W*^{*s,p*} with 0 < *s* < 1; see Bourgain, Brezis, and Mironescu; Bousquet and Mironescu; Mucci; and D., Mironescu, and Xiao.

The problem is still widely open.

9/11

・ロン (雪) (日) (日) [日)

The Jacobian of maps with fractional regularity by extension

A formal computation: if $U \in C^{\infty}(\mathbb{B}^3 \times (0, +\infty); \mathbb{R}^3)$ is an extension of *u* and $\tilde{\alpha}$ an extension of α , then

$$\begin{split} \langle Ju, \alpha \rangle &= -\int_{\mathbb{B}^3} \mathrm{d}\alpha \wedge u^{\sharp} \omega_{\mathbb{S}^2} = -\int_{\mathbb{B}^3 \times (0,\infty)} \mathrm{d}[\mathrm{d}\tilde{\alpha} \wedge U^{\sharp} \omega_{\mathbb{S}^2}] \\ &= \int_{\mathbb{B}^3 \times (0,\infty)} \mathrm{d}\tilde{\alpha} \wedge U^{\sharp} (\mathrm{d}\omega_{\mathbb{S}^2}). \end{split}$$

Strategy: (i) show that this computation is valid for $u \in W^{1,p}$; (ii) show that the right-hand side makes sense and is continuous for $u \in W^{s,p}$; (iii) show that Ju indeed detects the closure of smooth maps.

Antoine Detai	le (UCB	$L_1 - ICJ$
---------------	---------	-------------

・ロン (雪) (日) (日) [日)

The Jacobian of maps with fractional regularity by extension

A formal computation: if $U \in C^{\infty}(\mathbb{B}^3 \times (0, +\infty); \mathbb{R}^3)$ is an extension of *u* and $\tilde{\alpha}$ an extension of α , then

$$\langle Ju, \alpha \rangle = -\int_{\mathbb{B}^3} d\alpha \wedge u^{\sharp} \omega_{\mathbb{S}^2} = -\int_{\mathbb{B}^3 \times (0,\infty)} d[d\tilde{\alpha} \wedge U^{\sharp} \omega_{\mathbb{S}^2}]$$
$$= \int_{\mathbb{B}^3 \times (0,\infty)} d\tilde{\alpha} \wedge U^{\sharp} (d\omega_{\mathbb{S}^2}).$$

Strategy: (i) show that this computation is valid for $u \in W^{1,p}$; (ii) show that the right-hand side makes sense and is continuous for $u \in W^{s,p}$; (iii) show that Ju indeed detects the closure of smooth maps.

Density problems for Sobolev maps into manifolds

▲□▶▲圖▶★≧▶★≧▶ ≧ のQの The 2nd of June 2025

Thank you for your attention!

Antoine Detaille (UCBL1 — ICJ)

Density problems for Sobolev maps into manifolds

11 / 11

э