A complete answer to the strong density problem for Sobolev spaces with values into manifolds

Antoine Detaille

Université Claude Bernard Lyon 1 - Institut Camille Jordan

The 14th of November 2023

Sobolev spaces with values into manifolds

Let \mathcal{N} be a smooth Riemannian manifold, compact, connected, without boundary, isometrically embedded in \mathbb{R}^{ν} .

Let $\Omega \subset \mathbb{R}^m$ be a smooth bounded open set, $1 \le p < +\infty$, $0 < s < +\infty$.

Definition

$$W^{s,p}(\Omega; \mathcal{N}) = \{ u \in W^{s,p}(\Omega; \mathbb{R}^{\nu}) : u(x) \in \mathcal{N} \text{ for almost every } x \in \Omega \}$$

Reminder: classical Sobolev spaces

Let $s = k + \sigma$ with $k \in \mathbb{N}$ and $\sigma \in [0, 1)$.

$$W^{k,p}(\Omega) = \{ u \in L^p(\Omega) : D^j u \in L^p(\Omega) \text{ for every } j \in \{1,\ldots,k\} \}$$

If $\sigma \in (0,1)$,

$$W^{\sigma,p}(\Omega) = \left\{ u \in L^p(\Omega) : \int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^p}{|x - y|^{m + \sigma p}} \, \mathrm{d}x \, \mathrm{d}y < +\infty \right\}.$$

If
$$k \geq 1$$
,

$$W^{s,p}(\Omega) = \{ u \in W^{k,p}(\Omega) : D^k u \in W^{\sigma,p}(\Omega) \}.$$

A few applications

Applications in problems from physics: liquid crystals (\mathbb{S}^2 , \mathbb{RP}^2), supraconductivity (Ginzburg-Landau, \mathbb{S}^1), biaxial liquid crystals, superfluid helium...

Applications in problems from numerical methods: meshing domains.

Figure: A field of liquid crystals

Figure: Meshing the earth (see the *Hextreme* project: www.hextreme.eu)

The strong density problem

Theorem

 $C^{\infty}(\overline{\Omega})$ is dense in $W^{s,p}(\Omega)$

Question

Is $C^{\infty}(\overline{\Omega}; \mathcal{N})$ dense in $W^{s,p}(\Omega; \mathcal{N})$?

The strong density problem

Theorem

 $C^{\infty}(\overline{\Omega})$ is dense in $W^{s,p}(\Omega)$

Question

Is $C^{\infty}(\overline{\Omega}; \mathcal{N})$ dense in $W^{s,p}(\Omega; \mathcal{N})$?

A topological obstruction

For $1 \le p < 2$, the map $u \in W^{1,p}(\mathbb{B}^2; \mathbb{S}^1)$ defined by

$$u(x) = \frac{x}{|x|}$$

cannot be approached by maps in $C^{\infty}(\overline{\mathbb{B}}^2; \mathbb{S}^1)$.

Theorem (Schoen-Uhlenbeck (1983), Bethuel-Zheng (1988), Escobedo (1988))

Assume that sp < m. If $C^{\infty}(\overline{\Omega}; \mathcal{N})$ is dense in $W^{s,p}(\Omega; \mathcal{N})$, then $\pi_{|sp|}(\mathcal{N}) = \{0\}.$

The 14th of November 2023

A topological obstruction

For $1 \le p < 2$, the map $u \in W^{1,p}(\mathbb{B}^2; \mathbb{S}^1)$ defined by

$$u(x) = \frac{x}{|x|}$$

cannot be approached by maps in $C^{\infty}(\overline{\mathbb{B}}^2; \mathbb{S}^1)$.

Theorem (Schoen-Uhlenbeck (1983), Bethuel-Zheng (1988), Escobedo (1988))

Assume that sp < m. If $C^{\infty}(\overline{\Omega}; \mathcal{N})$ is dense in $W^{s,p}(\Omega; \mathcal{N})$, then $\pi_{|\mathfrak{sp}|}(\mathcal{N}) = \{0\}.$

The easy case $sp \ge m$

Proposition

If $sp \ge m$, then $C^{\infty}(\overline{\Omega}; \mathcal{N})$ is dense in $W^{s,p}(\Omega; \mathcal{N})$.

There exists $\iota > 0$ such that the *nearest point projection* $\Pi \colon \mathcal{N} + \mathcal{B}^{\nu}_{\iota} \to \mathcal{N}$ is well-defined and smooth.

The easy case $sp \ge m$

Proposition

If $sp \ge m$, then $C^{\infty}(\overline{\Omega}; \mathcal{N})$ is dense in $W^{s,p}(\Omega; \mathcal{N})$.

There exists $\iota > 0$ such that the nearest point projection $\Pi \colon \mathcal{N} + \mathcal{B}^{\nu}_{\iota} \to \mathcal{N}$ is well-defined and smooth.

Question

Is
$$C^{\infty}(\overline{\Omega}; \mathcal{N})$$
 dense in $W^{s,p}(\Omega; \mathcal{N})$ when $\pi_{|sp|}(\mathcal{N}) = \{0\}$?

Yes (when $\Omega = Q^m$) if

- s = 1 (Bethuel (1991));
- $s \in \mathbb{N}_*$ (Bousquet-Ponce-Van Schaftingen (2015));
- 0 < *s* < 1 (Brezis-Mironescu (2015)).

Remaining case: $s \ge 1$, $s \notin \mathbb{N}_*$.

Question

Is
$$C^{\infty}(\overline{\Omega}; \mathcal{N})$$
 dense in $W^{s,p}(\Omega; \mathcal{N})$ when $\pi_{\lfloor sp \rfloor}(\mathcal{N}) = \{0\}$?

Yes (when $\Omega = Q^m$) if

- s = 1 (Bethuel (1991));
- $s \in \mathbb{N}_*$ (Bousquet-Ponce-Van Schaftingen (2015));
- 0 < s < 1 (Brezis-Mironescu (2015)).

Question

Is
$$C^{\infty}(\overline{\Omega}; \mathcal{N})$$
 dense in $W^{s,p}(\Omega; \mathcal{N})$ when $\pi_{\lfloor sp \rfloor}(\mathcal{N}) = \{0\}$?

Yes (when $\Omega = Q^m$) if

- s = 1 (Bethuel (1991));
- $s \in \mathbb{N}_*$ (Bousquet-Ponce-Van Schaftingen (2015));
- 0 < s < 1 (Brezis-Mironescu (2015)).

Question

Is
$$C^{\infty}(\overline{\Omega}; \mathcal{N})$$
 dense in $W^{s,p}(\Omega; \mathcal{N})$ when $\pi_{\lfloor sp \rfloor}(\mathcal{N}) = \{0\}$?

Yes (when $\Omega = Q^m$) if

- s = 1 (Bethuel (1991));
- $s \in \mathbb{N}_*$ (Bousquet-Ponce-Van Schaftingen (2015));
- 0 < s < 1 (Brezis-Mironescu (2015)).

Question

Is
$$C^{\infty}(\overline{\Omega}; \mathcal{N})$$
 dense in $W^{s,p}(\Omega; \mathcal{N})$ when $\pi_{|sp|}(\mathcal{N}) = \{0\}$?

Yes (when $\Omega = Q^m$) if

- s = 1 (Bethuel (1991));
- $s \in \mathbb{N}_*$ (Bousquet-Ponce-Van Schaftingen (2015));
- 0 < s < 1 (Brezis-Mironescu (2015)).

Remaining case: $s \ge 1$, $s \notin \mathbb{N}_*$.

A complete answer to the density problem

Theorem

For every $1 \le p < +\infty$ and $0 < s < +\infty$ such that sp < m, $C^{\infty}(\overline{Q}^m; \mathcal{N})$ is dense in $W^{s,p}(Q^m; \mathcal{N})$ if and only if $\pi_{|sp|}(\mathcal{N}) = \{0\}$.

A unified proof of this result for the whole range $0 < s < +\infty$ *via* the method of good and bad cubes.

A complete answer to the density problem

Theorem

For every $1 \le p < +\infty$ and $0 < s < +\infty$ such that sp < m, $C^{\infty}(\overline{Q}^m; \mathcal{N})$ is dense in $W^{s,p}(Q^m; \mathcal{N})$ if and only if $\pi_{|sp|}(\mathcal{N}) = \{0\}$.

A unified proof of this result for the whole range $0 < s < +\infty$ *via* the method of good and bad cubes.

Opening

Introduced by Brezis and Li (2001).

Let $v \in L^p(\mathbb{B}^m)$.

Can we modify v to make it constant on B_n^m ?

Idea: take $\Phi: \mathbb{B}^m \to \mathbb{B}^m$ smooth, $\Phi = 0$ on B_n^m , $\Phi(x) = x$ on $\mathbb{B}^m \setminus B_{2n}^m$.

Consider $v_n^{\text{op}} = v \circ \Phi$.

Then v_n^{op} is constant on B_n^m and $v_n^{\text{op}} = v$ on $\mathbb{B}^m \setminus B_{2n}^m$.

Opening

Introduced by Brezis and Li (2001).

Let $v \in L^p(\mathbb{B}^m)$.

Can we modify v to make it constant on B_n^m ?

Idea: take $\Phi: \mathbb{B}^m \to \mathbb{B}^m$ smooth, $\Phi = 0$ on B^m_{2n} , $\Phi(x) = x$ on $\mathbb{B}^m \setminus B^m_{3n}$.

Consider $v_n^{\text{op}} = v \circ \Phi_a$, where $\Phi_a(x) = \Phi(x - a) + a$ for $a \in B_n^m$.

Then v_n^{op} is constant on B_n^m and $v_n^{\text{op}} = v$ on $\mathbb{B}^m \setminus B_{4n}^m$.

Adaptative smoothing

Popularized by Schoen and Uhlenbeck (1982).

Let $\varphi \in C_c^{\infty}(\mathbb{B}^m)$ be a mollifier:

$$\varphi \ge 0$$
 on \mathbb{B}^m and $\int_{\mathbb{B}^m} \varphi = 1$.

Let $\psi \in C^{\infty}(\Omega)$ with $\psi > 0$.

For $v \in W^{s,p}(\Omega)$, define

$$\varphi_{\psi} * v(x) = \int_{\mathbb{B}^m} \varphi(z) v(x + \psi(x)z) \, dz$$
$$= \frac{1}{\psi(x)^m} \int_{B_{\omega(x)}^m(x)} \varphi\left(\frac{y - x}{\psi(x)}\right) v(y) \, dy.$$

Thickening

Let
$$v \in C^{\infty}(\partial \mathbb{B}^m)$$
.

Can we propagate the values of v inside \mathbb{B}^m ?

Idea: define
$$w(x) = v(\frac{x}{|x|})$$
.

Thickening

Let
$$v \in C^{\infty}(\partial \mathbb{B}^m)$$
.

Can we propagate the values of v inside \mathbb{B}^m ?

Idea: define $w(x) = v(\frac{x}{|x|})$.

Shrinking

Let $v \in W^{1,p}(\mathbb{B}^m; \mathcal{N})$ and let $f \in C^{\infty}(\mathbb{B}^m; \mathcal{N})$ be such that v = f on $\mathbb{B}^m \setminus B_{ii}^m$.

Can we obtain a better extension with control on the energy?

$$v_{\tau}(x) = \begin{cases} f(x) = v(x) & \text{if } |x| \ge 2\mu, \\ f\left(\frac{x}{\tau}\right) & \text{if } |x| \le \tau\mu, \\ f\left(\frac{x}{|x|}\left(\frac{1}{2-\tau}(|x| - \tau\mu) + \mu\right)\right) & \text{otherwise.} \end{cases}$$

Shrinking

Let $v \in W^{1,p}(\mathbb{B}^m; \mathcal{N})$ and let $f \in C^{\infty}(\mathbb{B}^m; \mathcal{N})$ be such that v = f on $\mathbb{B}^m \setminus B_{ii}^m$.

Can we obtain a better extension with control on the energy?

Idea: define

$$v_{\tau}(x) = \begin{cases} f(x) = v(x) & \text{if } |x| \ge 2\mu, \\ f\left(\frac{x}{\tau}\right) & \text{if } |x| \le \tau\mu, \\ f\left(\frac{x}{|x|}\left(\frac{1}{2-\tau}(|x| - \tau\mu) + \mu\right)\right) & \text{otherwise.} \end{cases}$$

Thank you for your attention!