The strong density problem in Sobolev spaces of maps with values into manifolds

Antoine Detaille

Université Claude Bernard Lyon 1 — Institut Camille Jordan

The 21th of May 2024

Antoine Detaille (UCBL1 — ICJ)

Strong density problem in $W^{s,p}(\Omega; \mathcal{N})$

伺い くさい くさい

The 21th of May 2024

Sobolev spaces with values into manifolds

Let \mathcal{N} be a smooth Riemannian manifold, compact, connected, without boundary, isometrically embedded in \mathbb{R}^{ν} . Let $\Omega \subset \mathbb{R}^m$ be a smooth bounded open set, $1 \leq p < +\infty$, $0 < s < +\infty$.

Definition

 $W^{s,p}(\Omega; \mathcal{N}) = \{ u \in W^{s,p}(\Omega; \mathbb{R}^{\nu}) : u(x) \in \mathcal{N} \text{ for almost every } x \in \Omega \}$

2/21

(4月) トイラトイラ

Reminder: classical Sobolev spaces

Let $s = k + \sigma$ with $k \in \mathbb{N}$ and $\sigma \in [0, 1)$.

$$W^{k,p}(\Omega) = \{ u \in L^p(\Omega) : D^j u \in L^p(\Omega) \text{ for every } j \in \{1, \dots, k\} \}$$

If $\sigma \in (0, 1)$,

$$W^{\sigma,\rho}(\Omega) = \left\{ u \in L^{p}(\Omega) \colon \int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^{\rho}}{|x - y|^{m + \sigma \rho}} \, \mathrm{d}x \, \mathrm{d}y < +\infty \right\}.$$

If $k \geq 1$,

$$W^{s,p}(\Omega) = \{ u \in W^{k,p}(\Omega) : D^k u \in W^{\sigma,p}(\Omega) \}.$$

Strong density problem in $W^{s,p}(\Omega; \mathcal{N})$

A few applications

Applications in problems from physics: liquid crystals ($\2 , \mathbb{RP}^2), supraconductivity (Ginzburg-Landau, $\1), biaxial liquid crystals, superfluid helium...

Applications in problems from numerical methods: meshing domains.

Figure: A field of liquid crystals

Figure: Meshing the earth (see the *Hextreme* project: www.hextreme.eu)

Strong density problem in $W^{s,p}(\Omega; \mathcal{N})$

The 21th of May 2024

4/21

・ロト ・ 同ト ・ ヨト ・ ヨト

The strong density problem

Theorem

 $C^{\infty}(\overline{\Omega})$ is dense in $W^{s,p}(\Omega)$

Question Is $C^{\infty}(\overline{\Omega}; \mathcal{N})$ dense in $W^{s,p}(\Omega; \mathcal{N})$?

Antoine Detaille (UCBL1 — ICJ)

Strong density problem in $W^{s,p}(\Omega; \mathcal{N})$

The 21th of May 2024

5/21

イロト 人間 とくほ とくほう

The strong density problem

Theorem $C^{\infty}(\overline{\Omega})$ is dense in $W^{s,p}(\Omega)$

Question Is $C^{\infty}(\overline{\Omega}; \mathcal{N})$ dense in $W^{s,p}(\Omega; \mathcal{N})$?

Antoine Detaille (UCBL1 — ICJ)

Strong density problem in $W^{s,p}(\Omega; \mathcal{N})$

A topological obstruction

For $1 \le p < 2$, the map $u \in W^{1,p}(\mathbb{B}^2; \mathbb{S}^1)$ defined by

$$u(x) = \frac{x}{|x|}$$

cannot be approached by maps in $C^{\infty}(\overline{\mathbb{B}}^2; \mathbb{S}^1)$.

Theorem (Schoen-Uhlenbeck (1983), Bethuel-Zheng (1988), Escobedo (1988))

Assume that sp < m. If $C^{\infty}(\overline{\Omega}; \mathcal{N})$ is dense in $W^{s,p}(\Omega; \mathcal{N})$, then $\pi_{\lfloor sp \rfloor}(\mathcal{N}) = \{0\}.$

Antoine Detaille (UCBL1 — ICJ)

Strong density problem in $W^{s,p}(\Omega; \mathcal{N})$

A topological obstruction

For $1 \le p < 2$, the map $u \in W^{1,p}(\mathbb{B}^2; \mathbb{S}^1)$ defined by

$$u(x) = \frac{x}{|x|}$$

cannot be approached by maps in $C^{\infty}(\overline{\mathbb{B}}^2; \mathbb{S}^1)$.

Theorem (Schoen-Uhlenbeck (1983), Bethuel-Zheng (1988), Escobedo (1988))

Assume that sp < m. If $C^{\infty}(\overline{\Omega}; \mathcal{N})$ is dense in $W^{s,p}(\Omega; \mathcal{N})$, then $\pi_{\lfloor sp \rfloor}(\mathcal{N}) = \{0\}.$

Antoine Detaille (UCBL1 — ICJ)

Strong density problem in $W^{s,p}(\Omega; \mathcal{N})$

```
The easy case sp \ge m
```

Proposition

If $sp \ge m$, then $C^{\infty}(\overline{\Omega}; \mathcal{N})$ is dense in $W^{s,p}(\Omega; \mathcal{N})$.

There exists $\iota > 0$ such that the *nearest point projection* $\Pi : \mathcal{N} + B_{\iota}^{\nu} \to \mathcal{N}$ is well-defined and smooth.

Antoine Detaille (UCBL1 — ICJ)

Strong density problem in $W^{s,p}(\Omega; \mathcal{N})$

The 21th of May 2024

7 / 21

イロト イポト イヨト イヨト

```
The easy case sp \ge m
```

Proposition

If $sp \ge m$, then $C^{\infty}(\overline{\Omega}; \mathcal{N})$ is dense in $W^{s,p}(\Omega; \mathcal{N})$.

There exists $\iota > 0$ such that the *nearest point projection* $\Pi: \mathcal{N} + B_{\iota}^{\nu} \to \mathcal{N}$ is well-defined and smooth.

Antoine Detaille (UCBL1 — ICJ)

Strong density problem in $W^{s,p}(\Omega; \mathcal{N})$

The 21th of May 2024

7 / 21

イロト イポト イヨト イヨト

The strong density problem: sp < m

Question

Is $C^{\infty}(\overline{\Omega}; \mathcal{N})$ dense in $W^{s,p}(\Omega; \mathcal{N})$ when $\pi_{|sp|}(\mathcal{N}) = \{0\}$?

Theorem

For every $1 \le p < +\infty$ and $0 < s < +\infty$ such that sp < m, $C^{\infty}(\overline{Q}^{''}; \mathcal{N})$ is dense in $W^{s,p}(Q^m; \mathcal{N})$ if and only if $\pi_{\lfloor sp \rfloor}(\mathcal{N}) = \{0\}$.

Case of a general domain: Hang and Lin (2003).

Antoine Detaille (UCBL1 — ICJ)

Strong density problem in $W^{s,p}(\Omega; \mathcal{N})$

イロト イポト イヨト イヨト

The 21th of May 2024

The strong density problem: sp < m

Question

Is $C^{\infty}(\overline{\Omega}; \mathcal{N})$ dense in $W^{s,p}(\Omega; \mathcal{N})$ when $\pi_{|sp|}(\mathcal{N}) = \{0\}$?

Theorem

For every $1 \le p < +\infty$ and $0 < s < +\infty$ such that sp < m, $C^{\infty}(\overline{Q}^m; \mathcal{N})$ is dense in $W^{s,p}(Q^m; \mathcal{N})$ if and only if $\pi_{\lfloor sp \rfloor}(\mathcal{N}) = \{0\}$.

Case of a general domain: Hang and Lin (2003).

Antoine Detaille (UCBL1 — ICJ)

Strong density problem in $W^{s,p}(\Omega; \mathcal{N})$

イロト イポト イヨト イヨト

The 21th of May 2024

The strong density problem: sp < m

Question

Is $C^{\infty}(\overline{\Omega}; \mathcal{N})$ dense in $W^{s,p}(\Omega; \mathcal{N})$ when $\pi_{|sp|}(\mathcal{N}) = \{0\}$?

Theorem

For every $1 \le p < +\infty$ and $0 < s < +\infty$ such that sp < m, $C^{\infty}(\overline{Q}^m; \mathcal{N})$ is dense in $W^{s,p}(Q^m; \mathcal{N})$ if and only if $\pi_{\lfloor sp \rfloor}(\mathcal{N}) = \{0\}$.

Case of a general domain: Hang and Lin (2003).

Antoine Detaille (UCBL1 — ICJ)

Strong density problem in $W^{s,p}(\Omega; \mathcal{N})$

イロト イヨト イヨト

The 21th of May 2024

A class of almost smooth maps

Definition

The class $\mathscr{R}_i(\mathbb{Q}^m; \mathscr{N})$ is the set of all maps u such that there exists a finite union of *i*-submanifolds $\mathscr{S} = \mathscr{S}_u \subset \mathbb{R}^m$ such that $u \in \mathcal{C}^{\infty}(\overline{\mathbb{Q}}^m \setminus \mathscr{S}; \mathscr{N})$ and

$$|D^{j}u(x)| \leq C \frac{1}{\operatorname{dist}(x, \mathcal{S}_{u})^{j}}$$
 for every $x \in Q^{m}$ and $j \in \mathbb{N}_{*}$.

where C > 0 is a constant depending on *u* and *j*.

Theorem

For every $1 \le p < +\infty$ and $0 < s < +\infty$ such that sp < m,

 $\mathscr{R}_{m-\lfloor sp \rfloor-1}(Q^m; \mathscr{N})$ is dense in $W^{s,p}(Q^m; \mathscr{N})$.

Antoine Detaille (UCBL1 — ICJ)

Strong density problem in $W^{s,p}(\Omega; \mathcal{N})$

A class of almost smooth maps

Definition

The class $\mathscr{R}_i(\mathbb{Q}^m; \mathscr{N})$ is the set of all maps u such that there exists a finite union of *i*-submanifolds $\mathscr{S} = \mathscr{S}_u \subset \mathbb{R}^m$ such that $u \in \mathcal{C}^{\infty}(\overline{\mathbb{Q}}^m \setminus \mathscr{S}; \mathscr{N})$ and

$$|D^{j}u(x)| \leq C \frac{1}{\operatorname{dist}(x, \mathcal{S}_{u})^{j}}$$
 for every $x \in Q^{m}$ and $j \in \mathbb{N}_{*}$.

where C > 0 is a constant depending on *u* and *j*.

Theorem

For every
$$1 \le p < +\infty$$
 and $0 < s < +\infty$ such that $sp < m$,
 $\mathscr{R}_{m-\lfloor sp \rfloor - 1}(Q^m; \mathcal{N})$ is dense in $W^{s,p}(Q^m; \mathcal{N})$.

9/21

イロト イロト イヨト イヨト

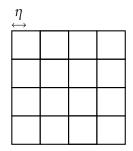
The density theorem

Theorem

For every $1 \le p < +\infty$ and $0 < s < +\infty$ such that sp < m, $C^{\infty}(\overline{Q}^m; \mathcal{N})$ is dense in $W^{s,p}(Q^m; \mathcal{N})$ if and only if $\pi_{\lfloor sp \rfloor}(\mathcal{N}) = \{0\}$, and $\mathscr{R}_{m-\lfloor sp \rfloor-1}(Q^m; \mathcal{N})$ is always dense in $W^{s,p}(Q^m; \mathcal{N})$.

- Case *s* = 1: Bethuel (1991), method of good and bad cubes.
- Case 0 < *s* < 1: Brezis and Mironescu (2015), method of homogeneous extension.
- Case *s* = 2, 3, ...: Bousquet, Ponce, and Van Schaftingen (2015), method of good and bad cubes + new tools.
- Case s > 1 non-integer: D. (2023), method of good and bad cubes + new tools + fractional estimates.

Good and bad cubes



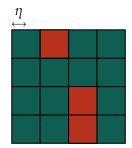
$$\int_{\mathcal{R}_{\eta}^{m-1}} |Du|^{p} \lesssim \frac{1}{\eta} \int_{Q} |Du|^{p}$$

Good cubes:
$$\frac{1}{\eta^{m-p}} \int_{\sigma} |Du|^p \leq \kappa^p$$
, $\frac{1}{\eta^{m-p-1}} \int_{\partial \sigma} |Du|^p \leq \kappa^p$.
Bad cubes: $|\mathscr{B}^m_{\eta}| \leq \eta^p \kappa^{-p} \int_{Q} |Du|^p$.

Antoine Detaille (UCBL1 — ICJ)

Strong density problem in $W^{s,p}(\Omega; \mathcal{N})$

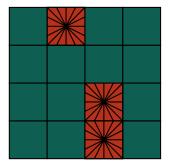
Good and bad cubes



$$\int_{\mathscr{K}_{\eta}^{m-1}} |Du|^{p} \lesssim \frac{1}{\eta} \int_{Q} |Du|^{p}$$

Good cubes:
$$\frac{1}{\eta^{m-p}} \int_{\sigma} |Du|^p \leq \kappa^p$$
, $\frac{1}{\eta^{m-p-1}} \int_{\partial\sigma} |Du|^p \leq \kappa^p$.
Bad cubes: $|\mathscr{B}^m_{\eta}| \leq \eta^p \kappa^{-p} \int_{Q} |Du|^p$.

On bad cubes: homogeneous extension



Model case:
$$\sigma = Q_{\eta}$$
.
Define $u_{\eta}(x) = u(\eta \frac{x}{|x|_{\infty}})$.
 $\int_{Q_{\eta}} |Du_{\eta}|^{p} \leq \frac{\eta}{m-p} \int_{\partial Q_{\eta}} |Du|^{p}$

Antoine Detaille (UCBL1 — ICJ)

Strong density problem in $W^{s,p}(\Omega; \mathcal{N})$

3

On good cubes: regularization by convolution

Lemma

There exists $\mathbf{w}_{\eta} \in W^{1,p}(\mathscr{G}_{\eta}^{m}; \mathbb{R}^{\nu})$ such that

- for every good cube σ , there exists $\mathbf{y}_{\sigma} \in \mathcal{N}$ such that $\mathbf{w}_{\eta} \in \mathbf{B}_{\iota}(\mathbf{y}_{\sigma})$ on σ ;
- $w_{\eta} = u \text{ on } \partial \sigma;$
- there exists A_{η} with $|A_{\eta}| \leq \kappa^{\rho} \iota^{-\rho}$ such that

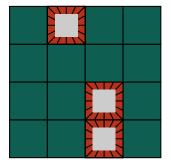
$$\int_{\mathscr{G}_{\eta}^{m}} |w_{\eta}-u|^{p} + \int_{\mathscr{G}_{\eta}^{m}} |Dw_{\eta}-Du|^{p} \lesssim \int_{A_{\eta}} |Du|^{p}.$$

Antoine Detaille (UCBL1 — ICJ)

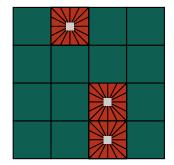
Strong density problem in $W^{s,p}(\Omega; \mathcal{N})$

The 21th of May 2024

Removing the singularities



 \Rightarrow



Antoine Detaille (UCBL1 — ICJ)

Strong density problem in $W^{s,p}(\Omega; \mathcal{N})$

The 21th of May 2024

イロト イポト イヨト イヨト

14 / 21

3

The density theorem

Theorem

For every $1 \le p < +\infty$ and $0 < s < +\infty$ such that sp < m, $C^{\infty}(\overline{Q}^m; \mathcal{N})$ is dense in $W^{s,p}(Q^m; \mathcal{N})$ if and only if $\pi_{\lfloor sp \rfloor}(\mathcal{N}) = \{0\}$, and $\mathscr{R}_{m-\lfloor sp \rfloor-1}(Q^m; \mathcal{N})$ is always dense in $W^{s,p}(Q^m; \mathcal{N})$.

- Case *s* = 1: Bethuel (1991), method of good and bad cubes.
- Case 0 < *s* < 1: Brezis and Mironescu (2015), method of homogeneous extension.
- Case *s* = 2, 3, ...: Bousquet, Ponce, and Van Schaftingen (2015), method of good and bad cubes + new tools.
- Case s > 1 non-integer: D. (2023), method of good and bad cubes + new tools + fractional estimates.

Can we improve the class \mathscr{R}_i ?

Fact

If $\pi_{\lfloor sp \rfloor}(\mathcal{N}) \neq \{0\}$, then the class $\mathcal{R}_i(Q^m; \mathcal{N})$ is dense in $W^{s,p}(Q^m; \mathcal{N})$ if and only if $i = m - \lfloor sp \rfloor - 1$.

Definition

The class $\mathscr{R}_i^{\text{uncr}}(Q^m; \mathscr{N})$ is the set of all $u \in \mathscr{R}_i(Q^m; \mathscr{N})$ such that the singular set \mathscr{S} is a closedly embedded *i*-dimensional submanifold of \mathbb{R}^m .

Antoine Detaille (UCBL1 — ICJ)

Strong density problem in $W^{s,p}(\Omega; \mathcal{N})$

Can we improve the class \mathcal{R}_i ?

Fact

If $\pi_{\lfloor sp \rfloor}(\mathcal{N}) \neq \{0\}$, then the class $\mathcal{R}_i(Q^m; \mathcal{N})$ is dense in $W^{s,p}(Q^m; \mathcal{N})$ if and only if $i = m - \lfloor sp \rfloor - 1$.

Definition

The class $\mathscr{R}_i^{\text{uncr}}(Q^m; \mathscr{N})$ is the set of all $u \in \mathscr{R}_i(Q^m; \mathscr{N})$ such that the singular set \mathscr{S} is a closedly embedded *i*-dimensional submanifold of \mathbb{R}^m .

Antoine Detaille (UCBL1 — ICJ)

Strong density problem in $W^{s,p}(\Omega; \mathcal{N})$

Density of the class \mathscr{R}^{uncr}

Theorem (D. (2024))

Assume that sp < m. The class $\mathscr{R}_{m-\lfloor sp \rfloor-1}^{uncr}(Q^m; \mathscr{N})$ is dense in $W^{s,p}(Q^m; \mathscr{N})$.

Previously known cases using the *method of singular projection* (Federer and Fleming (1960), adapted by Hardt and Lin (1987)):

- $W^{1,p}(\mathbb{B}^m; \mathbb{S}^{m-1})$ (Bethuel and Zheng (1988));
- $W^{\frac{1}{2},2}(\mathbb{S}^2; \mathbb{S}^1)$ (Rivière (2000));
- $W^{s,p}(\mathbb{S}^m; \mathbb{S}^{m-1})$ with 0 < s < 1 and sp < m (Bourgain, Brezis, and Mironescu (2005));
- $W^{s,p}(\mathbb{S}^m; \mathbb{S}^1)$ with $1 \le sp < 2$ (Bousquet (2007));
- ([*sp*] 1)-connected target with 0 < *s* < 1 (Bousquet, Ponce, and Van Schaftingen (2014)).

Antoine Detaille (UCBL1 - ICJ)

Strong density problem in $W^{s,p}(\Omega; \mathcal{N})$

The 21th of May 2024

Density of the class \mathscr{R}^{uncr}

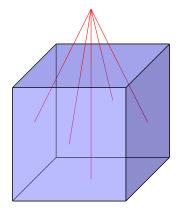
Theorem (D. (2024))

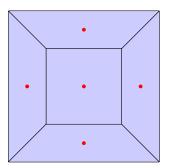
Assume that sp < m. The class $\mathscr{R}_{m-\lfloor sp \rfloor-1}^{\mathrm{uncr}}(Q^m; \mathscr{N})$ is dense in $W^{s,p}(Q^m; \mathscr{N})$.

Previously known cases using the *method of singular projection* (Federer and Fleming (1960), adapted by Hardt and Lin (1987)):

- $W^{1,p}(\mathbb{B}^m; \mathbb{S}^{m-1})$ (Bethuel and Zheng (1988));
- $W^{\frac{1}{2},2}(\mathbb{S}^2;\mathbb{S}^1)$ (Rivière (2000));
- $W^{s,p}(\mathbb{S}^m; \mathbb{S}^{m-1})$ with 0 < s < 1 and sp < m (Bourgain, Brezis, and Mironescu (2005));
- $W^{s,p}(S^m; S^1)$ with $1 \le sp < 2$ (Bousquet (2007));
- ([*sp*] 1)-connected target with 0 < *s* < 1 (Bousquet, Ponce, and Van Schaftingen (2014)).

The crossings removal procedure: basic idea



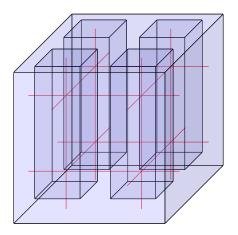


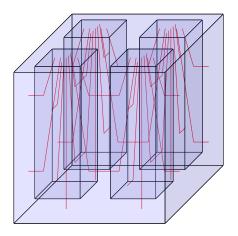
Antoine Detaille (UCBL1 — ICJ)

Strong density problem in $W^{s,p}(\Omega; \mathcal{N})$

The 21th of May 2024

The crossings removal procedure: uncrossing lines





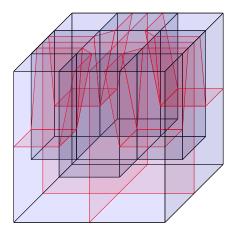
Strong density problem in $W^{s,p}(\Omega; \mathcal{N})$

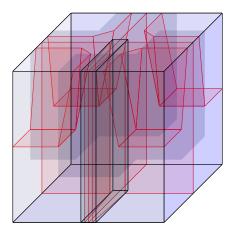
The 21th of May 2024

19/21

→ ∃ →

The crossings removal procedure: uncrossing planes





Antoine Detaille (UCBL1 — ICJ)

Strong density problem in $W^{s,p}(\Omega; \mathcal{N})$

The 21th of May 2024

20 / 21

- A 🖻 🕨

Thank you for your attention!

Antoine Detaille (UCBL1 — ICJ)

Strong density problem in $W^{s,p}(\Omega; \mathcal{N})$

3