Analytical obstructions to the weak approximation of Sobolev mappings into manifolds

Antoine Detaille

Université Claude Bernard Lyon 1 — Institut Camille Jordan Website: andetaille.github.io

The 22nd of May 2025

Antoine Detaille (UCBL1 — ICJ)

Analytical obstructions to weak approximation

The 22nd of May 2025

1/13

イロト 不得 とくほ とくほう

Main goal: new families of counterexamples to the weak approximation property of Sobolev mappings into manifolds, joint work with J. Van Schaftingen (UCLouvain).

On the way:

- Sobolev mappings: definition and motivation;
- the strong density problem: statement and complete answer;
- the weak approximation problem: statement and state of the art.

イロン スポン イヨン イヨン 三日

Sobolev spaces with values into manifolds

Let \mathcal{N} be a smooth compact Riemannian manifold, isometrically embedded in \mathbb{R}^{ν} . Let \mathcal{M} be a smooth compact Riemannian manifold of dimension m and $1 \le p < +\infty$.

Definition

 $W^{1,p}(\mathcal{M};\mathcal{N}) = \{ u \in W^{1,p}(\mathcal{M};\mathbb{R}^{\nu}) : u(x) \in \mathcal{N} \text{ for almost every } x \in \mathcal{M} \}$

化口水 化氢水 化医水化医水

The strong density problem

Theorem

The space $C^{\infty}(\mathcal{M})$ is dense in $W^{1,p}(\mathcal{M})$.

Question

Define

 $H^{1,p}_{S}(\mathcal{M};\mathcal{N}) = \{ u \in W^{1,p}(\mathcal{M};\mathcal{N}): \text{there exists } (u_n)_{n \in \mathbb{N}} \text{ in } C^{\infty}(\mathcal{M};\mathcal{N}) \text{ such that } u_n \to u \}.$

Does it hold that $H_S^{1,p}(\mathcal{M}; \mathcal{N}) = W^{1,p}(\mathcal{M}; \mathcal{N})$?

Antoine Detaille (UCBL1 — ICJ)

Analytical obstructions to weak approximation

The strong density problem

Theorem

The space $C^{\infty}(\mathcal{M})$ is dense in $W^{1,p}(\mathcal{M})$.

Question

Define

$$H^{1,p}_{\mathcal{S}}(\mathcal{M};\mathcal{N}) = \{ u \in W^{1,p}(\mathcal{M};\mathcal{N}) : \text{there exists } (u_n)_{n \in \mathbb{N}} \text{ in } C^{\infty}(\mathcal{M};\mathcal{N}) \text{ such that } u_n \to u \}.$$

Does it hold that $H_S^{1,p}(\mathcal{M}; \mathcal{N}) = W^{1,p}(\mathcal{M}; \mathcal{N})$?

Antoine Detaille (UCBL1 — ICJ)

Analytical obstructions to weak approximation

The strong density theorem

Theorem (Bethuel (1991))

Assume that p < m. Then, $H_S^{1,p}(\mathbb{B}^m; \mathcal{N}) = W^{1,p}(\mathbb{B}^m; \mathcal{N})$ if and only if $\pi_{\lfloor p \rfloor}(\mathcal{N}) = \{0\}$.

Extensions to $W^{s,p}$: Brezis and Mironescu (2015, 0 < s < 1); Bousquet, Ponce, and Van Schaftingen (2015, s = 2, 3, ...); D. (2023, s > 1 noninteger).

The case where \mathcal{M} is topologically non-trivial was explored by Hang and Lin (2003). There, *global* obstructions may arise.

ヘロン 人間 とくほ とくほ とう

The strong density theorem

Theorem (Bethuel (1991))

Assume that p < m. Then, $H_S^{1,p}(\mathbb{B}^m; \mathcal{N}) = W^{1,p}(\mathbb{B}^m; \mathcal{N})$ if and only if $\pi_{\lfloor p \rfloor}(\mathcal{N}) = \{0\}$.

Extensions to $W^{s,p}$: Brezis and Mironescu (2015, 0 < s < 1); Bousquet, Ponce, and Van Schaftingen (2015, s = 2, 3, ...); D. (2023, s > 1 noninteger).

The case where \mathcal{M} is topologically non-trivial was explored by Hang and Lin (2003). There, *global* obstructions may arise.

イロン スポン イヨン イヨン 三日

The strong density theorem

Theorem (Bethuel (1991))

Assume that p < m. Then, $H_S^{1,p}(\mathbb{B}^m; \mathcal{N}) = W^{1,p}(\mathbb{B}^m; \mathcal{N})$ if and only if $\pi_{\lfloor p \rfloor}(\mathcal{N}) = \{0\}$.

Extensions to $W^{s,p}$: Brezis and Mironescu (2015, 0 < s < 1); Bousquet, Ponce, and Van Schaftingen (2015, s = 2, 3, ...); D. (2023, s > 1 noninteger).

The case where \mathcal{M} is topologically non-trivial was explored by Hang and Lin (2003). There, *global* obstructions may arise.

Let's be less demanding: weak approximation

We say that $(u_n)_{n \in \mathbb{N}}$ weakly converges to u in $W^{1,p}$, and we write $u_n \rightarrow u$, whenever $u_n \rightarrow u$ almost everywhere and

$$\sup_{n\in\mathbb{N}}\mathcal{E}^{1,p}(u_n,\mathcal{M})=\sup_{n\in\mathbb{N}}\int_{\mathcal{M}}|\mathsf{D} u_n|^p<+\infty.$$

Define

 $H^{1,p}_W(\mathcal{M};\mathcal{N}) = \{ u \in W^{1,p}(\mathcal{M};\mathcal{N}) : \text{there exists } (u_n)_{n \in \mathbb{N}} \text{ in } C^{\infty}(\mathcal{M};\mathcal{N}) \text{ such that } u_n \rightharpoonup u \}.$

Question

Does it hold that $H^{1,p}_W(\mathcal{M}; \mathcal{N}) = W^{1,p}(\mathcal{M}; \mathcal{N})$?

Let's be less demanding: weak approximation

We say that $(u_n)_{n \in \mathbb{N}}$ weakly converges to u in $W^{1,p}$, and we write $u_n \rightarrow u$, whenever $u_n \rightarrow u$ almost everywhere and

$$\sup_{n\in\mathbb{N}}\mathcal{E}^{1,p}(u_n,\mathcal{M})=\sup_{n\in\mathbb{N}}\int_{\mathcal{M}}|\mathsf{D} u_n|^p<+\infty.$$

Define

 $H^{1,p}_W(\mathcal{M};\mathcal{N}) = \{ u \in W^{1,p}(\mathcal{M};\mathcal{N}) : \text{there exists } (u_n)_{n \in \mathbb{N}} \text{ in } C^{\infty}(\mathcal{M};\mathcal{N}) \text{ such that } u_n \rightharpoonup u \}.$

Question

Does it hold that $H^{1,p}_W(\mathcal{M}; \mathcal{N}) = W^{1,p}(\mathcal{M}; \mathcal{N})$?

A topological obstruction: here we go again?

If $p \notin \mathbb{N}$ and $\pi_{\lfloor p \rfloor}(\mathcal{N}) \neq \{0\}$, then $H^{1,p}_W(\mathcal{M}; \mathcal{N}) \subsetneq W^{1,p}(\mathcal{M}; \mathcal{N})$ whenever dim $\mathcal{M} > p$.

Theorem (Bethuel (1991))

If $p \notin \mathbb{N}$, then $H^{1,p}_W(\mathcal{M}; \mathcal{N}) = H^{1,p}_S(\mathcal{M}; \mathcal{N})$.

イロト イポト イヨト イヨト

A topological obstruction: here we go again?

If $p \notin \mathbb{N}$ and $\pi_{\lfloor p \rfloor}(\mathcal{N}) \neq \{0\}$, then $H^{1,p}_W(\mathcal{M}; \mathcal{N}) \subsetneq W^{1,p}(\mathcal{M}; \mathcal{N})$ whenever dim $\mathcal{M} > p$.

Theorem (Bethuel (1991))

If $p \notin \mathbb{N}$, then $H^{1,p}_W(\mathcal{M}; \mathcal{N}) = H^{1,p}_S(\mathcal{M}; \mathcal{N})$.

イロン イボン イヨン イヨン

Unlike for $2 , we have <math>\frac{x}{|x|} \in H^{1,2}_W(\mathbb{B}^3; \mathbb{S}^2)$.

More generally, we have:

- $H_S^{1,2}(\mathbb{B}^3; \mathbb{S}^2) \subsetneq H_W^{1,2}(\mathbb{B}^3; \mathbb{S}^2) = W^{1,2}(\mathbb{B}^3; \mathbb{S}^2)$ (Bethuel (1990));
- $H^{1,p}_W(\mathcal{M}; \mathcal{N}) = W^{1,p}(\mathcal{M}; \mathcal{N})$ whenever \mathcal{N} is (p-1)-connected (Hajłasz (1994));
- $H^{1,2}_W(\mathcal{M}; \mathcal{N}) = W^{1,2}(\mathcal{M}; \mathcal{N})$ for more general \mathcal{N} (Pakzad and Rivière (2003)).

Unlike for $2 , we have <math>\frac{x}{|x|} \in H^{1,2}_W(\mathbb{B}^3; \mathbb{S}^2)$.

More generally, we have:

- $H_{\mathbb{S}}^{1,2}(\mathbb{B}^3; \mathbb{S}^2) \subsetneq H_W^{1,2}(\mathbb{B}^3; \mathbb{S}^2) = W^{1,2}(\mathbb{B}^3; \mathbb{S}^2)$ (Bethuel (1990));
- $H^{1,p}_W(\mathcal{M}; \mathcal{N}) = W^{1,p}(\mathcal{M}; \mathcal{N})$ whenever \mathcal{N} is (p-1)-connected (Hajłasz (1994));
- $H^{1,2}_W(\mathcal{M}; \mathcal{N}) = W^{1,2}(\mathcal{M}; \mathcal{N})$ for more general \mathcal{N} (Pakzad and Rivière (2003)).

Unlike for $2 , we have <math>\frac{x}{|x|} \in H^{1,2}_W(\mathbb{B}^3; \mathbb{S}^2)$.

More generally, we have:

- $H_{\mathbb{S}}^{1,2}(\mathbb{B}^3; \mathbb{S}^2) \subsetneq H_W^{1,2}(\mathbb{B}^3; \mathbb{S}^2) = W^{1,2}(\mathbb{B}^3; \mathbb{S}^2)$ (Bethuel (1990));
- $H^{1,p}_W(\mathcal{M}; \mathcal{N}) = W^{1,p}(\mathcal{M}; \mathcal{N})$ whenever \mathcal{N} is (p-1)-connected (Hajłasz (1994));
- $H^{1,2}_{W}(\mathcal{M}; \mathcal{N}) = W^{1,2}(\mathcal{M}; \mathcal{N})$ for more general \mathcal{N} (Pakzad and Rivière (2003)).

Unlike for
$$2 , we have $\frac{x}{|x|} \in H^{1,2}_W(\mathbb{B}^3; \mathbb{S}^2)$.$$

More generally, we have:

•
$$H_S^{1,2}(\mathbb{B}^3; \mathbb{S}^2) \subsetneq H_W^{1,2}(\mathbb{B}^3; \mathbb{S}^2) = W^{1,2}(\mathbb{B}^3; \mathbb{S}^2)$$
 (Bethuel (1990));

- $H^{1,p}_W(\mathcal{M}; \mathcal{N}) = W^{1,p}(\mathcal{M}; \mathcal{N})$ whenever \mathcal{N} is (p-1)-connected (Hajłasz (1994));
- $H^{1,2}_W(\mathcal{M}; \mathcal{N}) = W^{1,2}(\mathcal{M}; \mathcal{N})$ for more general \mathcal{N} (Pakzad and Rivière (2003)).

Unlike for
$$2 , we have $\frac{x}{|x|} \in H^{1,2}_W(\mathbb{B}^3; \mathbb{S}^2)$.$$

More generally, we have:

•
$$H_S^{1,2}(\mathbb{B}^3; \mathbb{S}^2) \subsetneq H_W^{1,2}(\mathbb{B}^3; \mathbb{S}^2) = W^{1,2}(\mathbb{B}^3; \mathbb{S}^2)$$
 (Bethuel (1990));

- $H^{1,p}_W(\mathcal{M}; \mathcal{N}) = W^{1,p}(\mathcal{M}; \mathcal{N})$ whenever \mathcal{N} is (p-1)-connected (Hajłasz (1994));
- $H^{1,2}_W(\mathcal{M}; \mathcal{N}) = W^{1,2}(\mathcal{M}; \mathcal{N})$ for more general \mathcal{N} (Pakzad and Rivière (2003)).

Obstructions strike back: the analytical obstruction

Theorem (Bethuel (2020)) If $m \ge 4$, then $H^{1,3}_W(\mathcal{M}; \mathbb{S}^2) \subsetneq W^{1,3}(\mathcal{M}; \mathbb{S}^2)$.

Global topological obstructions were already known (Hang and Lin (2003)). Here, the obstruction is local: it arises already if $\mathcal{M} = \mathbb{B}^4$.

Ingredients involve: the Hopf invariant, Pontryagin construction, the theory of scans by Hardt and Rivière (2003), and branched optimal transportation.

イロト 不得 とくほ とくほう

Obstructions strike back: the analytical obstruction

Theorem (Bethuel (2020))

If $m \ge 4$, then $H^{1,3}_W(\mathcal{M}; \mathbb{S}^2) \subsetneq W^{1,3}(\mathcal{M}; \mathbb{S}^2)$.

Global topological obstructions were already known (Hang and Lin (2003)). Here, the obstruction is local: it arises already if $\mathcal{M} = \mathbb{B}^4$.

Ingredients involve: the Hopf invariant, Pontryagin construction, the theory of scans by Hardt and Rivière (2003), and branched optimal transportation.

Antoine Detaille	(UCBL1 —	- ICJ)
------------------	----------	--------

イロト イヨト イヨト イヨト

Obstructions strike back: the analytical obstruction

Theorem (Bethuel (2020))

If $m \ge 4$, then $H^{1,3}_W(\mathcal{M}; \mathbb{S}^2) \subsetneq W^{1,3}(\mathcal{M}; \mathbb{S}^2)$.

Global topological obstructions were already known (Hang and Lin (2003)). Here, the obstruction is local: it arises already if $\mathcal{M} = \mathbb{B}^4$.

Ingredients involve: the Hopf invariant, Pontryagin construction, the theory of scans by Hardt and Rivière (2003), and branched optimal transportation.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

An analytical obstruction for every $p \in \mathbb{N} \setminus \{0, 1\}$

Theorem (D. and Van Schaftingen (2024))

For every $p \in \mathbb{N} \setminus \{0, 1\}$, there exists a compact Riemannian manifold \mathcal{N} such that, if dim $\mathcal{M} > p$, then

$$H^{1,p}_W(\mathcal{M};\mathcal{N}) \subsetneq W^{1,p}(\mathcal{M};\mathcal{N}).$$

Antoine Detaille	$(UCBL_1 - ICJ)$
------------------	------------------

The 22nd of May 2025 10 / 13

イロト 不得 とくほと くほう

Key procedure in the proof: superlinear energy growth

The *relaxed energy* is defined as

$$\mathcal{E}_{\mathrm{rel}}^{1,p}(u,\mathcal{M}) = \inf \liminf_{n \to +\infty} \int_{\mathcal{M}} |\mathsf{D} u_n|^p,$$

where the inf is over all sequences of $C^{\infty}(\mathcal{M}; \mathcal{N})$ maps converging a.e. to u. We construct a sequence $(u_n)_{n \in \mathbb{N}}$ such that

 $\liminf_{n \to +\infty} \frac{\mathcal{E}_{\text{rel}}^{1,p}(u_n, \mathcal{M})}{\mathcal{E}^{1,p}(u_n, \mathcal{M})} = +\infty.$

The conclusion follows from the nonlinear uniform boundedness principle (Hang and Lin (2003), Monteil and Van Schaftingen (2019)), a nonlinear version of the Banach–Steinhaus theorem.

Antoine Detaille (UCBL1 — ICJ)

Analytical obstructions to weak approximation

The 22nd of May 2025 11 / 13

Key procedure in the proof: superlinear energy growth

The *relaxed energy* is defined as

$$\mathcal{E}_{\mathrm{rel}}^{1,p}(u,\mathcal{M}) = \inf \liminf_{n \to +\infty} \int_{\mathcal{M}} |\mathsf{D} u_n|^p,$$

where the inf is over all sequences of $C^{\infty}(\mathcal{M}; \mathcal{N})$ maps converging a.e. to u. We construct a sequence $(u_n)_{n \in \mathbb{N}}$ such that

$$\liminf_{n \to +\infty} \frac{\mathcal{E}_{\mathrm{rel}}^{1,p}(u_n,\mathcal{M})}{\mathcal{E}^{1,p}(u_n,\mathcal{M})} = +\infty.$$

The conclusion follows from the nonlinear uniform boundedness principle (Hang and Lin (2003), Monteil and Van Schaftingen (2019)), a nonlinear version of the Banach–Steinhaus theorem.

Antoine Detaille (UCBL1 — ICJ)

The 22nd of May 2025 11 / 13

A second family of analytical obstructions

Theorem (D. and Van Schaftingen (2024)) For every $n \in \mathbb{N}_*$, if dim $\mathcal{M} > 4n - 1$, then

$$H^{1,4n-1}_{W}(\mathcal{M};\mathbb{S}^{2n}) \subsetneq W^{1,4n-1}(\mathcal{M};\mathbb{S}^{2n}).$$

The key ingredient is a periodic construction using a Whitehead product.

This shows that Bethuel's counterexample is actually part of an infinite family (and considerably simplifies the proof).

イロト イポト イヨト イヨ

A second family of analytical obstructions

Theorem (D. and Van Schaftingen (2024)) For every $n \in \mathbb{N}_*$, if dim $\mathcal{M} > 4n - 1$, then

$$H^{1,4n-1}_{W}(\mathcal{M};\mathbb{S}^{2n}) \subsetneq W^{1,4n-1}(\mathcal{M};\mathbb{S}^{2n}).$$

The key ingredient is a periodic construction using a Whitehead product.

This shows that Bethuel's counterexample is actually part of an infinite family (and considerably simplifies the proof).

化口压 化间压 化压压 化压压

Thank you for your attention!

Antoine Detaille (UCBL1 — ICJ)

Analytical obstructions to weak approximation

э

13/13