A glimpse at the marvelous world of Sobolev mappings into manifolds

Antoine Detaille

Université Claude Bernard Lyon 1 — Institut Camille Jordan

The 29th of August 2024

Antoine Detaille (UCBL1 — ICJ) [Sobolev mappings to manifolds](#page-33-0) The 29th of August 2024 1/14

 $2Q$

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶

Sobolev spaces with values into manifolds

Let $\mathcal N$ be a smooth compact Riemannian manifold, isometrically embedded in $\mathbb R^\nu$. Let $\Omega \subset \mathbb{R}^m$ be a smooth bounded open set, and $1 \le p < +\infty$.

Definition

Antoine Detaille (UCBL1 - ICJ)

 $W^{1,p}(\Omega; \mathcal{N}) = \{u \in W^{1,p}(\Omega; \mathbb{R}^{\nu}) : u(x) \in \mathcal{N} \text{ for almost every } x \in \Omega\}$

Applications in physics: liquid crystals (\mathbb{S}^2 , \mathbb{RP}^2), supraconductivity (Ginzburg-Landau, $S¹$), biaxial liquid crystals, superfluid helium...

Applications in numerical methods: meshing domains, see project *Hextreme*.

Sobolev spaces with values into manifolds

Let $\mathcal N$ be a smooth compact Riemannian manifold, isometrically embedded in $\mathbb R^\nu$. Let $\Omega \subset \mathbb{R}^m$ be a smooth bounded open set, and $1 \leq p < +\infty$.

Definition

 $W^{1,p}(\Omega; \mathcal{N}) = \{u \in W^{1,p}(\Omega; \mathbb{R}^{\nu}) : u(x) \in \mathcal{N} \text{ for almost every } x \in \Omega\}$

Applications in physics: liquid crystals (S², RP²), supraconductivity (Ginzburg-Landau, $S¹$), biaxial liquid crystals, superfluid helium...

Applications in numerical methods: meshing domains, see project *Hextreme*.

 QQQ

イロト イ御 トイヨ トイヨ トーヨ

The strong density problem

Theorem

The space $C^{\infty}(\overline{\Omega})$ is dense in $W^{1,p}(\Omega)$.

Is $\mathcal{C}^\infty(\overline{\Omega}; \mathcal{N})$ dense in $W^{1,p}(\Omega; \mathcal{N})$?

 \equiv $0⁰$

ノー・ショッシュ ディンディ

The strong density problem

Theorem

The space $C^{\infty}(\overline{\Omega})$ is dense in $W^{1,p}(\Omega)$.

Question

Is $C^{\infty}(\overline{\Omega}; \mathcal{N})$ dense in $W^{1,p}(\Omega; \mathcal{N})$?

A topological obstruction

For $2 \le p < 3$, the map $u_0 \in W^{1,p}(\mathbb{B}^3; \mathbb{S}^2)$ defined by

$$
u_0(x)=\frac{x}{|x|}
$$

cannot be approached by maps in $C^{\infty}(\overline{\mathbb{B}^3}; S^2)$.

 QQ

イロト イ御 トイヨ トイヨ トーヨ

A topological obstruction: proof

By contradiction: assume that $(u_n)_{n \in \mathbb{N}_*}$ in $C^\infty(\overline{\mathbb{B}^3}; S^2)$, $u_n \to u_0$ in $W^{1,p}$. Genericity argument: up to extraction,

$$
u_{n|\partial B_r^3} \xrightarrow{W^{1,p}} u_{0|\partial B_r^3} \quad \text{for a. e. } 0 < r < 1. \tag{1}
$$

This comes from a Fubini–Tonelli-type argument:

$$
\int_{\mathbb{B}^3} = \int_0^1 \left(\int_{\partial B_r^3} \right) dr.
$$

Now, Morrey–Sobolev implies that the convergence in [\(1\)](#page-6-0) is uniform. But $u_{n|\partial B_r^3} \sim$ cte, while $u_{0|\partial B_r^3} \nsim \text{cte}$, a contradiction.

A topological obstruction: proof

By contradiction: assume that $(u_n)_{n \in \mathbb{N}_*}$ in $C^\infty(\overline{\mathbb{B}^3}; S^2)$, $u_n \to u_0$ in $W^{1,p}$. Genericity argument: up to extraction,

$$
u_{n|\partial B_r^3} \xrightarrow{W^{1,p}} u_{0|\partial B_r^3} \quad \text{for a. e. } 0 < r < 1. \tag{1}
$$

This comes from a Fubini–Tonelli-type argument:

$$
\int_{\mathbb{B}^3} = \int_0^1 \left(\int_{\partial B_r^3} \right) dr.
$$

Now, Morrey–Sobolev implies that the convergence in [\(1\)](#page-6-0) is uniform. But $u_{n|\partial B_r^3} \sim$ cte, while $u_{0|\partial B_r^3} \nsim \text{cte}$, a contradiction.

KID KARA KE KERI E YOKO

A topological obstruction: proof

By contradiction: assume that $(u_n)_{n \in \mathbb{N}_*}$ in $C^\infty(\overline{\mathbb{B}^3}; S^2)$, $u_n \to u_0$ in $W^{1,p}$. Genericity argument: up to extraction,

$$
u_{n|\partial B_r^3} \xrightarrow{W^{1,p}} u_{0|\partial B_r^3} \quad \text{for a. e. } 0 < r < 1. \tag{1}
$$

This comes from a Fubini–Tonelli-type argument:

$$
\int_{\mathbb{B}^3} = \int_0^1 \left(\int_{\partial B_r^3} \right) dr.
$$

Now, Morrey–Sobolev implies that the convergence in [\(1\)](#page-6-0) is uniform. But $u_{n|\partial B_r^3} \sim$ cte, while $u_{0|\partial B_r^3} \nsim \text{cte}$, a contradiction.

KID KARA KE KERI E YOKO

A topological obstruction

For $2 \le p < 3$, the map $u_0 \in W^{1,p}(\mathbb{B}^3; \mathbb{S}^2)$ defined by

$$
u_0(x) = \mathrm{id}_{S^2}\bigg(\frac{x}{|x|}\bigg)
$$

cannot be approached by maps in $C^\infty(\overline{\mathbb{B}^3}; \mathbb{S}^2)$.

Assume that $p < m$. If $C^{\infty}(\overline{\Omega}; \mathcal{N})$ is dense in $W^{1,p}(\Omega; \mathcal{N})$, then $\pi_{\lfloor p \rfloor}(\mathcal{N}) = \{0\}.$

ACTIVITY AND THE ACCOUNT

A topological obstruction

For $2 \le p < 3$, the map $u_0 \in W^{1,p}(\mathbb{B}^3; \mathbb{S}^2)$ defined by

$$
u_0(x) = \mathrm{id}_{S^2}\bigg(\frac{x}{|x|}\bigg)
$$

cannot be approached by maps in $C^\infty(\overline{\mathbb{B}^3}; \mathbb{S}^2)$.

Theorem (Schoen-Uhlenbeck (1983), Bethuel-Zheng (1988)) Assume that $p < m$. If $C^{\infty}(\overline{\Omega}; \mathcal{N})$ is dense in $W^{1,p}(\Omega; \mathcal{N})$, then $\pi_{\lfloor p \rfloor}(\mathcal{N}) = \{0\}$.

 QQ

イロト イ御 トイヨ トイヨ トーヨ

The strong density theorem

Theorem (Bethuel (1991))

Assume that $p < m$ *. Then,* $C^{\infty}(\overline{\mathbb{B}^m}; \mathcal{N})$ is dense in $W^{1,p}(\mathbb{B}^m; \mathcal{N})$ if and only if $\pi_{\lfloor p \rfloor}(\mathcal{N}) = \{0\}$ *.*

Extensions to $W^{s,p}$: Brezis and Mironescu (2015, $0 < s < 1$); Bousquet, Ponce, and Van Schaftingen (2015, *^s* ⁼ ², ³, . . .); D. (2023, *^s* > ¹ noninteger).

The case where Ω is topologically non-trivial was explored by Hang and Lin (2003).

KONKAPHAEN E VOOR

The strong density theorem

Theorem (Bethuel (1991))

Assume that $p < m$ *. Then,* $C^{\infty}(\overline{\mathbb{B}^m}; \mathcal{N})$ is dense in $W^{1,p}(\mathbb{B}^m; \mathcal{N})$ if and only if $\pi_{\lfloor p \rfloor}(\mathcal{N}) = \{0\}$ *.*

Extensions to $W^{s,p}$: Brezis and Mironescu (2015, 0 < s < 1); Bousquet, Ponce, and Van Schaftingen (2015, *^s* ⁼ ², ³, . . .); D. (2023, *^s* > ¹ noninteger).

The case where Ω is topologically non-trivial was explored by Hang and Lin (2003).

 QQ

イロト イ御 トイヨ トイヨ トーヨ

The strong density theorem

Theorem (Bethuel (1991))

Assume that $p < m$ *. Then,* $C^{\infty}(\overline{\mathbb{B}^m}; \mathcal{N})$ is dense in $W^{1,p}(\mathbb{B}^m; \mathcal{N})$ if and only if $\pi_{\lfloor p \rfloor}(\mathcal{N}) = \{0\}$ *.*

Extensions to $W^{s,p}$: Brezis and Mironescu (2015, 0 < s < 1); Bousquet, Ponce, and Van Schaftingen (2015, *^s* ⁼ ², ³, . . .); D. (2023, *^s* > ¹ noninteger).

The case where Ω is topologically non-trivial was explored by Hang and Lin (2003).

 QQ

イロト イ御 トイヨ トイヨ トーヨ

A new question

When $C^\infty(\overline{\Omega};\mathcal{N})$ is not dense in $W^{1,p}(\Omega;\mathcal{N})$, can we characterize $\overline{C^\infty(\overline{\Omega};\mathcal{N})}^{W^{1,p}}$?

A good starting point: the *Jacobian*.

Let $u \in W^{1,2}(\mathbb{B}^3; \mathbb{S}^2)$. We want to define $Ju = d(u^{\sharp} \omega_{\mathbb{S}^2})$.

This is well-defined in the sense of distributions:

$$
\langle Ju, \alpha \rangle = -\int_{\mathbb{B}^3} d\alpha \wedge u^{\sharp} \omega_{\mathbb{S}^2} \quad \text{for every } \alpha \in C_c^{\infty}(\mathbb{B}^3).
$$

Let us compute Ju_0 , where $u_0(x) = \frac{x}{|x|}$.

 299

イロト イ押 トイヨ トイヨ トーヨ

When $C^\infty(\overline{\Omega};\mathcal{N})$ is not dense in $W^{1,p}(\Omega;\mathcal{N})$, can we characterize $\overline{C^\infty(\overline{\Omega};\mathcal{N})}^{W^{1,p}}$?

A good starting point: the *Jacobian*. Let $u \in W^{1,2}(\mathbb{B}^3; \mathbb{S}^2)$. We want to define $Ju = d(u^{\sharp} \omega_{\mathbb{S}^2})$. This is well-defined in the sense of distributions:

$$
\langle Ju, \alpha \rangle = -\int_{\mathbb{B}^3} d\alpha \wedge u^{\sharp} \omega_{\mathbb{S}^2} \quad \text{for every } \alpha \in C_c^{\infty}(\mathbb{B}^3).
$$

Let us compute Ju_0 , where $u_0(x) = \frac{x}{|x|}$.

 299

イロメ イ押メ イヨメ イヨメーヨー

When $C^\infty(\overline{\Omega};\mathcal{N})$ is not dense in $W^{1,p}(\Omega;\mathcal{N})$, can we characterize $\overline{C^\infty(\overline{\Omega};\mathcal{N})}^{W^{1,p}}$?

A good starting point: the *Jacobian*. Let $u \in W^{1,2}(\mathbb{B}^3; \mathbb{S}^2)$. We want to define $Ju = d(u^{\sharp} \omega_{\mathbb{S}^2})$. This is well-defined in the sense of distributions:

$$
\langle Ju, \alpha \rangle = -\int_{\mathbb{B}^3} d\alpha \wedge u^{\sharp} \omega_{\mathbb{S}^2} \quad \text{for every } \alpha \in C_c^{\infty}(\mathbb{B}^3).
$$

Let us compute Ju_0 , where $u_0(x) = \frac{x}{|x|}$.

 299

イロメ イ押メ イヨメ イヨメーヨー

A Jacobian computation

By the Leibniz rule,

$$
d(\alpha \wedge u^{\sharp} \omega_{S^2}) = d\alpha \wedge u^{\sharp} \omega_{S^2} + (-1)^{*} \alpha \wedge d(u^{\sharp} \omega_{S^2}) = d\alpha \wedge u^{\sharp} \omega_{S^2}.
$$

By Stokes's formula,

$$
\langle Ju_0, \alpha \rangle = - \lim_{\varepsilon \to 0} \int_{\mathbb{B}^3 \setminus \mathcal{B}^3_{\varepsilon}} d(\alpha \wedge u_0^{\sharp} \omega_{\mathbb{S}^2}) = \lim_{\varepsilon \to 0} \int_{\partial \mathcal{B}^3_{\varepsilon}} \alpha \wedge u_0^{\sharp} \omega_{\mathbb{S}^2}.
$$

Since α is smooth and u_0 is homogeneous,

$$
\int_{\partial B_{\varepsilon}^3} \alpha \wedge u_0^{\sharp} \omega_{\mathbb{S}^2} \approx \alpha(0) \int_{\partial B_{\varepsilon}^3} u_0^{\sharp} \omega_{\mathbb{S}^2} = \alpha(0) \int_{\mathbb{S}^2} \omega_{\mathbb{S}^2} = 4\pi \alpha(0).
$$

メロトメ 御 トメ 君 トメ 君 ト

È.

 299

A Jacobian computation

By the Leibniz rule,

$$
d(\alpha \wedge u^{\sharp} \omega_{S^2}) = d\alpha \wedge u^{\sharp} \omega_{S^2} + (-1)^{*} \alpha \wedge d(u^{\sharp} \omega_{S^2}) = d\alpha \wedge u^{\sharp} \omega_{S^2}.
$$

By Stokes's formula,

$$
\langle Ju_0, \alpha \rangle = - \lim_{\varepsilon \to 0} \int_{\mathbb{B}^3 \setminus \mathcal{B}^3_{\varepsilon}} d(\alpha \wedge u_0^{\sharp} \omega_{\mathbb{S}^2}) = \lim_{\varepsilon \to 0} \int_{\partial \mathcal{B}^3_{\varepsilon}} \alpha \wedge u_0^{\sharp} \omega_{\mathbb{S}^2}.
$$

Since α is smooth and u_0 is homogeneous,

$$
\int_{\partial B_{\varepsilon}^3} \alpha \wedge u_0^{\sharp} \omega_{S^2} \approx \alpha(0) \int_{\partial B_{\varepsilon}^3} u_0^{\sharp} \omega_{S^2} = \alpha(0) \int_{S^2} \omega_{S^2} = 4\pi \alpha(0).
$$

K ロ ⊁ K 伊 ⊁ K ミ ⊁ K ミ ⊁

È.

 299

A Jacobian computation

By the Leibniz rule,

$$
d(\alpha \wedge u^{\sharp} \omega_{S^2}) = d\alpha \wedge u^{\sharp} \omega_{S^2} + (-1)^{*} \alpha \wedge d(u^{\sharp} \omega_{S^2}) = d\alpha \wedge u^{\sharp} \omega_{S^2}.
$$

By Stokes's formula,

$$
\langle Ju_0, \alpha \rangle = - \lim_{\varepsilon \to 0} \int_{\mathbb{B}^3 \setminus \mathcal{B}^3_{\varepsilon}} d(\alpha \wedge u_0^{\sharp} \omega_{\mathbb{S}^2}) = \lim_{\varepsilon \to 0} \int_{\partial \mathcal{B}^3_{\varepsilon}} \alpha \wedge u_0^{\sharp} \omega_{\mathbb{S}^2}.
$$

Since α is smooth and u_0 is homogeneous,

$$
\int_{\partial B_\varepsilon^3} \alpha \wedge u_0^\sharp \omega_{S^2} \approx \alpha(0) \int_{\partial B_\varepsilon^3} u_0^\sharp \omega_{S^2} = \alpha(0) \int_{S^2} \omega_{S^2} = 4\pi \alpha(0).
$$

È.

 299

K ロ ⊁ K 伊 ⊁ K ミ ⊁ K ミ ⊁

Characterizing the closure of smooth maps with the Jacobian

We have computed that $Ju_0 = 4\pi \delta_0$.

On the other hand, if $u \in C^{\infty}(\mathbb{B}^3; \mathbb{S}^2)$ *W*1,² , then $Ju = 0$.

$$
\overline{C^{\infty}(\overline{\mathbb{B}^3}; \mathbb{S}^2)}^{W^{1,2}} = \{u \in W^{1,2}(\mathbb{B}^3; \mathbb{S}^2): Ju = 0\}
$$

KONKAPHAEN E VOOR

Characterizing the closure of smooth maps with the Jacobian

We have computed that $Ju_0 = 4\pi \delta_0$.

On the other hand, if
$$
u \in \overline{C^{\infty}(\overline{\mathbb{B}^3}; \mathbb{S}^2)}
$$
, then $Ju = 0$.

$$
\overline{C^{\infty}(\overline{\mathbb{B}^3}; \mathbb{S}^2)}^{W^{1,2}} = \{u \in W^{1,2}(\mathbb{B}^3; \mathbb{S}^2): Ju = 0\}
$$

KORKAR KERKER DI KORA

Characterizing the closure of smooth maps with the Jacobian

We have computed that $Ju_0 = 4\pi \delta_0$.

On the other hand, if
$$
u \in \overline{C^{\infty}(\overline{\mathbb{B}^3}; \mathbb{S}^2)}
$$
, then $Ju = 0$.

Theorem (Bethuel (1990))

$$
\overline{C^{\infty}(\overline{\mathbb{B}^3};\mathbb{S}^2)}^{W^{1,2}} = \{u \in W^{1,2}(\mathbb{B}^3;\mathbb{S}^2): Ju = 0\}
$$

KORKAR KERKER DI KORA

- \bullet Identify the topological singularities as $\partial G_{\mu\nu}$; see Giaquinta, Modica, and Souček.
- Define Sing *u* as a flat chain with values into a group; see Pakzad and Rivière.
- Identify the topological singularities using *scans*; see Hardt and Rivière.
- Extension to *Ws*,*^p* with 0 < *s* < 1; see Bourgain, Brezis, and Mironescu; Bousquet and Mironescu; Mucci; and work in progress.

The problem is still widely open.

÷.

 $2Q$

K ロ ⊁ K 伊 ⊁ K ミ ⊁ K ミ ⊁

- \bullet Identify the topological singularities as ∂G_{μ} ; see Giaquinta, Modica, and Souček.
- Define Sing *u* as a flat chain with values into a group; see Pakzad and Rivière.
- Identify the topological singularities using *scans*; see Hardt and Rivière.
- Extension to *Ws*,*^p* with 0 < *s* < 1; see Bourgain, Brezis, and Mironescu; Bousquet and Mironescu; Mucci; and work in progress.

The problem is still widely open.

÷.

 $2Q$

イロトス 伊 トス ミトス ミトー

- \bullet Identify the topological singularities as ∂G_{μ} ; see Giaquinta, Modica, and Souček.
- Define Sing *u* as a flat chain with values into a group; see Pakzad and Rivière.
- Identify the topological singularities using *scans*; see Hardt and Rivière.
- Extension to *Ws*,*^p* with 0 < *s* < 1; see Bourgain, Brezis, and Mironescu; Bousquet and Mironescu; Mucci; and work in progress.

The problem is still widely open.

 \equiv

 $2Q$

イロトス 倒 トス ヨ トス ヨ トー

- \bullet Identify the topological singularities as $\partial G_{\mu\nu}$; see Giaquinta, Modica, and Souček.
- Define Sing *u* as a flat chain with values into a group; see Pakzad and Rivière.
- Identify the topological singularities using *scans*; see Hardt and Rivière.
- Extension to *Ws*,*^p* with 0 < *s* < 1; see Bourgain, Brezis, and Mironescu; Bousquet and Mironescu; Mucci; and work in progress.

The problem is still widely open.

 QQQ

イロト イ押 トイヨ トイヨ トーヨ

- \bullet Identify the topological singularities as $\partial G_{\mu\nu}$; see Giaquinta, Modica, and Souček.
- Define Sing *u* as a flat chain with values into a group; see Pakzad and Rivière.
- Identify the topological singularities using *scans*; see Hardt and Rivière.
- Extension to *Ws*,*^p* with 0 < *s* < 1; see Bourgain, Brezis, and Mironescu; Bousquet and Mironescu; Mucci; and work in progress.

The problem is still widely open.

 QQQ

 $A \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup A \cup B$

The weak density problem

Definition

We say that $(u_n)_{n\in\mathbb{N}}$ in $W^{1,p}(\Omega;\mathcal{N})$ converges weakly to $u\in W^{1,p}(\Omega;\mathcal{N})$, and we write $u_n \rightharpoonup u$, whenever $u_n \rightharpoonup u$ almost everywhere and there exists $C > 0$ such that $\int_{\Omega} |Du_n|^p \leq C$ for every $n \in \mathbb{N}$.

Ouestion

When is $\mathcal{C}^\infty(\overline{\Omega};\mathscr{N})$ sequentially weakly dense in $\mathcal{W}^{1,p}(\Omega;\mathscr{N})$?

 Ω

 $\left\{ \frac{1}{100} \right\}$ and $\left\{ \frac{1}{100} \right\}$ and $\left\{ \frac{1}{100} \right\}$ and $\left\{ \frac{1}{100} \right\}$

When *p* ∉ ℕ, same as strong density.

- Always true when $\mathcal N$ is $(p 1)$ -connected; see Hajłasz (1994).
- **True for more general manifolds when** $p = 2$ **; see Pakzad and Rivière (2003).**
- Counterexample in $W^{1,3}(\mathbb{B}^4; \mathbb{S}^2)$; see Bethuel (2020).

- When *p* ∉ ℕ, same as strong density.
- Always true when $\mathcal N$ is $(p 1)$ -connected; see Hajłasz (1994).
- **True for more general manifolds when** $p = 2$ **; see Pakzad and Rivière (2003).**
- Counterexample in $W^{1,3}(\mathbb{B}^4; \mathbb{S}^2)$; see Bethuel (2020).

 299

イロト イ押 トイヨ トイヨ トーヨ

- When *p* ∉ ℕ, same as strong density.
- Always true when *N* is (*p* − 1)-connected; see Hajłasz (1994).
- True for more general manifolds when $p = 2$; see Pakzad and Rivière (2003).

Counterexample in $W^{1,3}(\mathbb{B}^4; \mathbb{S}^2)$; see Bethuel (2020).

- When *p* ∉ ℕ, same as strong density.
- Always true when $\mathcal N$ is $(p 1)$ -connected; see Hajłasz (1994).
- True for more general manifolds when $p = 2$; see Pakzad and Rivière (2003).
- Counterexample in $W^{1,3}(\mathbb{B}^4; \mathbb{S}^2)$; see Bethuel (2020).

 2990

イロト イ押 トイヨト イヨト 一番

Thank you for your attention!

 $2Q$

重

K ロ ト K 倒 ト K 走 ト K 走