A glimpse at the marvelous world of Sobolev mappings into manifolds

Antoine Detaille

Université Claude Bernard Lyon 1 — Institut Camille Jordan

The 29th of August 2024

Antoine Detaille (UCBL1 — ICJ)

Sobolev mappings to manifolds

The 29th of August 2024

イロト 不得 とくほ とくほう

Sobolev spaces with values into manifolds

Let \mathcal{N} be a smooth compact Riemannian manifold, isometrically embedded in \mathbb{R}^{ν} . Let $\Omega \subset \mathbb{R}^m$ be a smooth bounded open set, and $1 \leq p < +\infty$.

Definition

 $W^{1,p}(\Omega; \mathcal{N}) = \{ u \in W^{1,p}(\Omega; \mathbb{R}^{\nu}) : u(x) \in \mathcal{N} \text{ for almost every } x \in \Omega \}$

Applications in physics: liquid crystals (\mathbb{S}^2 , \mathbb{RP}^2), supraconductivity (Ginzburg-Landau, \mathbb{S}^1), biaxial liquid crystals, superfluid helium...

Applications in numerical methods: meshing domains, see project Hextreme.

ヘロン 人間 とくほ とくほ とう

Sobolev spaces with values into manifolds

Let \mathcal{N} be a smooth compact Riemannian manifold, isometrically embedded in \mathbb{R}^{ν} . Let $\Omega \subset \mathbb{R}^m$ be a smooth bounded open set, and $1 \le p < +\infty$.

Definition

 $W^{1,p}(\Omega; \mathcal{N}) = \{ u \in W^{1,p}(\Omega; \mathbb{R}^{\nu}) : u(x) \in \mathcal{N} \text{ for almost every } x \in \Omega \}$

Applications in physics: liquid crystals (\mathbb{S}^2 , \mathbb{RP}^2), supraconductivity (Ginzburg-Landau, \mathbb{S}^1), biaxial liquid crystals, superfluid helium...

Applications in numerical methods: meshing domains, see project *Hextreme*.

イロト イポト イヨト 一日

The strong density problem

Theorem

The space $C^{\infty}(\overline{\Omega})$ is dense in $W^{1,p}(\Omega)$.

Question

Is $C^{\infty}(\overline{\Omega}; \mathcal{N})$ dense in $W^{1,p}(\Omega; \mathcal{N})$?

Antoine Detaille	$(UCBL_1 - ICJ)$
------------------	------------------

イロト イロト イヨト イヨト

The strong density problem

Theorem

The space $C^{\infty}(\overline{\Omega})$ is dense in $W^{1,p}(\Omega)$.

Question

Is $C^{\infty}(\overline{\Omega}; \mathcal{N})$ dense in $W^{1,p}(\Omega; \mathcal{N})$?

Antoine Detaille 🛛	(UCBL1 —	ICJ)
--------------------	----------	------

▲■ ▶ ▲ 国 ▶ ▲ 国

A topological obstruction

For $2 \le p < 3$, the map $u_0 \in W^{1,p}(\mathbb{B}^3; \mathbb{S}^2)$ defined by

$$u_0(x) = \frac{x}{|x|}$$

cannot be approached by maps in $C^{\infty}(\overline{\mathbb{B}^3}; \mathbb{S}^2)$.

3

ヘロン 人間 とくほ とくほ とう

A topological obstruction: proof

By contradiction: assume that $(u_n)_{n \in \mathbb{N}_*}$ in $C^{\infty}(\overline{\mathbb{B}^3}; \mathbb{S}^2)$, $u_n \to u_0$ in $W^{1,p}$. Genericity argument: up to extraction,

$$u_{n|\partial B_r^3} \xrightarrow{W^{1,p}} u_{0|\partial B_r^3} \quad \text{for a. e. } 0 < r < 1.$$
(1)

This comes from a Fubini–Tonelli-type argument:

$$\int_{\mathbb{B}^3} = \int_0^1 \left(\int_{\partial B_r^3} \right) \mathrm{d}r.$$

Now, Morrey–Sobolev implies that the convergence in (1) is uniform. But $u_{n|\partial B_r^3} \sim \text{cte}$, while $u_{0|\partial B_r^3} \neq \text{cte}$, a contradiction.

A topological obstruction: proof

By contradiction: assume that $(u_n)_{n \in \mathbb{N}_*}$ in $C^{\infty}(\overline{\mathbb{B}^3}; \mathbb{S}^2)$, $u_n \to u_0$ in $W^{1,p}$. Genericity argument: up to extraction,

$$u_{n|\partial B_r^3} \xrightarrow{W^{1,p}} u_{0|\partial B_r^3} \quad \text{for a. e. } 0 < r < 1.$$
(1)

This comes from a Fubini–Tonelli-type argument:

$$\int_{\mathbb{B}^3} = \int_0^1 \left(\int_{\partial B_r^3} \right) \mathrm{d}r.$$

Now, Morrey–Sobolev implies that the convergence in (1) is uniform. But $u_{n|\partial B_r^3} \sim \text{cte}$, while $u_{0|\partial B_r^3} \neq \text{cte}$, a contradiction.

・ロン (雪) (日) (日) [日)

A topological obstruction: proof

By contradiction: assume that $(u_n)_{n \in \mathbb{N}_*}$ in $C^{\infty}(\overline{\mathbb{B}^3}; \mathbb{S}^2)$, $u_n \to u_0$ in $W^{1,p}$. Genericity argument: up to extraction,

$$u_{n|\partial B_r^3} \xrightarrow{W^{1,p}} u_{0|\partial B_r^3} \quad \text{for a. e. } 0 < r < 1.$$
(1)

This comes from a Fubini–Tonelli-type argument:

$$\int_{\mathbb{B}^3} = \int_0^1 \left(\int_{\partial B_r^3} \right) \mathrm{d}r.$$

Now, Morrey–Sobolev implies that the convergence in (1) is uniform. But $u_{n|\partial B_r^3} \sim \text{cte}$, while $u_{0|\partial B_r^3} \neq \text{cte}$, a contradiction.

A topological obstruction

For $2 \le p < 3$, the map $u_0 \in W^{1,p}(\mathbb{B}^3; \mathbb{S}^2)$ defined by

$$u_0(x) = \mathrm{id}_{\mathbb{S}^2}\left(\frac{x}{|x|}\right)$$

cannot be approached by maps in $C^{\infty}(\overline{\mathbb{B}^3}; \mathbb{S}^2)$.

Theorem (Schoen-Uhlenbeck (1983), Bethuel-Zheng (1988))

Assume that p < m. If $C^{\infty}(\overline{\Omega}; \mathcal{N})$ is dense in $W^{1,p}(\Omega; \mathcal{N})$, then $\pi_{\lfloor p \rfloor}(\mathcal{N}) = \{0\}$.

Antoine Detaille (UCBL1 — ICJ)	Sobolev mappings to manifolds	The 29th of August 2024	6 / 14

A topological obstruction

For $2 \le p < 3$, the map $u_0 \in W^{1,p}(\mathbb{B}^3; \mathbb{S}^2)$ defined by

$$u_0(x) = \mathrm{id}_{\mathbb{S}^2}\left(\frac{x}{|x|}\right)$$

cannot be approached by maps in $C^{\infty}(\overline{\mathbb{B}^3}; \mathbb{S}^2)$.

Theorem (Schoen-Uhlenbeck (1983), Bethuel-Zheng (1988)) Assume that p < m. If $C^{\infty}(\overline{\Omega}; \mathcal{N})$ is dense in $W^{1,p}(\Omega; \mathcal{N})$, then $\pi_{\lfloor p \rfloor}(\mathcal{N}) = \{0\}$.

Antoine Detaille ($UCBL_1 - ICJ$	
--------------------	----------------	--

イロン 人間 とくほ とくほ とう

The strong density theorem

Theorem (Bethuel (1991))

Assume that p < m. Then, $C^{\infty}(\overline{\mathbb{B}^m}; \mathcal{N})$ is dense in $W^{1,p}(\mathbb{B}^m; \mathcal{N})$ if and only if $\pi_{\lfloor p \rfloor}(\mathcal{N}) = \{0\}$.

Extensions to $W^{s,p}$: Brezis and Mironescu (2015, 0 < s < 1); Bousquet, Ponce, and Van Schaftingen (2015, s = 2, 3, ...); D. (2023, s > 1 noninteger).

The case where Ω is topologically non-trivial was explored by Hang and Lin (2003).

Antoine Detaille	(UCBL1 —	ICJ)
------------------	----------	------

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

The strong density theorem

Theorem (Bethuel (1991))

Assume that p < m. Then, $C^{\infty}(\overline{\mathbb{B}^m}; \mathcal{N})$ is dense in $W^{1,p}(\mathbb{B}^m; \mathcal{N})$ if and only if $\pi_{\lfloor p \rfloor}(\mathcal{N}) = \{0\}$.

Extensions to $W^{s,p}$: Brezis and Mironescu (2015, 0 < s < 1); Bousquet, Ponce, and Van Schaftingen (2015, s = 2, 3, ...); D. (2023, s > 1 noninteger).

The case where Ω is topologically non-trivial was explored by Hang and Lin (2003).

Antoine Detaill	le (UCBL1 — I	CJ)
-----------------	---------------	-----

イロト イポト イヨト 一日

The strong density theorem

Theorem (Bethuel (1991))

Assume that p < m. Then, $C^{\infty}(\overline{\mathbb{B}^m}; \mathcal{N})$ is dense in $W^{1,p}(\mathbb{B}^m; \mathcal{N})$ if and only if $\pi_{\lfloor p \rfloor}(\mathcal{N}) = \{0\}$.

Extensions to $W^{s,p}$: Brezis and Mironescu (2015, 0 < s < 1); Bousquet, Ponce, and Van Schaftingen (2015, s = 2, 3, ...); D. (2023, s > 1 noninteger).

The case where Ω is topologically non-trivial was explored by Hang and Lin (2003).

7/14

A new question

When $C^{\infty}(\overline{\Omega}; \mathcal{N})$ is not dense in $W^{1,p}(\Omega; \mathcal{N})$, can we characterize $\overline{C^{\infty}(\overline{\Omega}; \mathcal{N})}^{W^{1,p}}$?

A good starting point: the Jacobian.

Let $u \in W^{1,2}(\mathbb{B}^3; \mathbb{S}^2)$. We want to define $Ju = d(u^{\sharp}\omega_{\mathbb{S}^2})$.

This is well-defined in the sense of distributions:

$$\langle Ju, \alpha \rangle = -\int_{\mathbb{B}^3} \mathrm{d}\alpha \wedge u^{\sharp} \omega_{\mathbb{S}^2} \quad \text{for every } \alpha \in C^{\infty}_{\mathrm{c}}(\mathbb{B}^3).$$

Let us compute Ju_0 , where $u_0(x) = \frac{x}{|x|}$.

A new question

When $C^{\infty}(\overline{\Omega}; \mathcal{N})$ is not dense in $W^{1,p}(\Omega; \mathcal{N})$, can we characterize $\overline{C^{\infty}(\overline{\Omega}; \mathcal{N})}^{W^{1,p}}$?

A good starting point: the *Jacobian*. Let $u \in W^{1,2}(\mathbb{B}^3; \mathbb{S}^2)$. We want to define $Ju = d(u^{\sharp}\omega_{\mathbb{S}^2})$. This is well-defined in the sense of distributions:

$$\langle Ju, \alpha \rangle = -\int_{\mathbb{B}^3} \mathrm{d}\alpha \wedge u^{\sharp} \omega_{\mathbb{S}^2} \quad \text{for every } \alpha \in C^{\infty}_{\mathrm{c}}(\mathbb{B}^3).$$

Let us compute Ju_0 , where $u_0(x) = \frac{x}{|x|}$.

イロン 不良 とくほう 不良 とうほう

A new question

When $C^{\infty}(\overline{\Omega}; \mathcal{N})$ is not dense in $W^{1,p}(\Omega; \mathcal{N})$, can we characterize $\overline{C^{\infty}(\overline{\Omega}; \mathcal{N})}^{W^{1,p}}$?

A good starting point: the *Jacobian*. Let $u \in W^{1,2}(\mathbb{B}^3; \mathbb{S}^2)$. We want to define $Ju = d(u^{\sharp}\omega_{\mathbb{S}^2})$. This is well-defined in the sense of distributions:

$$\langle Ju, \alpha \rangle = -\int_{\mathbb{B}^3} \mathrm{d}\alpha \wedge u^{\sharp} \omega_{\mathbb{S}^2} \quad \text{for every } \alpha \in C^{\infty}_{\mathrm{c}}(\mathbb{B}^3).$$

Let us compute Ju_0 , where $u_0(x) = \frac{x}{|x|}$.

(日本)(日本)(日本)(日本)

A Jacobian computation

By the Leibniz rule,

$$\mathsf{d}(\alpha \wedge u^{\sharp}\omega_{\mathbf{S}^{2}}) = \mathsf{d}\alpha \wedge u^{\sharp}\omega_{\mathbf{S}^{2}} + (-1)^{*}\alpha \wedge \mathsf{d}(u^{\sharp}\omega_{\mathbf{S}^{2}}) = \mathsf{d}\alpha \wedge u^{\sharp}\omega_{\mathbf{S}^{2}}.$$

By Stokes's formula,

$$\langle Ju_0, \alpha \rangle = -\lim_{\varepsilon \to 0} \int_{\mathbb{B}^3 \setminus B^3_{\varepsilon}} \mathsf{d}(\alpha \wedge u_0^{\sharp} \omega_{\mathbb{S}^2}) = \lim_{\varepsilon \to 0} \int_{\partial B^3_{\varepsilon}} \alpha \wedge u_0^{\sharp} \omega_{\mathbb{S}^2}.$$

Since α is smooth and u_0 is homogeneous,

$$\int_{\partial B^3_{\varepsilon}} \alpha \wedge u_0^{\sharp} \omega_{\mathbb{S}^2} \approx \alpha(0) \int_{\partial B^3_{\varepsilon}} u_0^{\sharp} \omega_{\mathbb{S}^2} = \alpha(0) \int_{\mathbb{S}^2} \omega_{\mathbb{S}^2} = 4\pi\alpha(0).$$

э

・ロト ・四ト ・ヨト ・ヨト

A Jacobian computation

By the Leibniz rule,

$$\mathsf{d}(\alpha \wedge u^{\sharp}\omega_{\mathbf{S}^{2}}) = \mathsf{d}\alpha \wedge u^{\sharp}\omega_{\mathbf{S}^{2}} + (-1)^{*}\alpha \wedge \mathsf{d}(u^{\sharp}\omega_{\mathbf{S}^{2}}) = \mathsf{d}\alpha \wedge u^{\sharp}\omega_{\mathbf{S}^{2}}.$$

By Stokes's formula,

$$\langle Ju_0, \alpha \rangle = -\lim_{\varepsilon \to 0} \int_{\mathbb{B}^3 \setminus B^3_{\varepsilon}} \mathsf{d}(\alpha \wedge u_0^{\sharp} \omega_{\mathbf{S}^2}) = \lim_{\varepsilon \to 0} \int_{\partial B^3_{\varepsilon}} \alpha \wedge u_0^{\sharp} \omega_{\mathbf{S}^2}.$$

Since α is smooth and u_0 is homogeneous,

$$\int_{\partial B^3_{\varepsilon}} \alpha \wedge u_0^{\sharp} \omega_{\mathbb{S}^2} \approx \alpha(0) \int_{\partial B^3_{\varepsilon}} u_0^{\sharp} \omega_{\mathbb{S}^2} = \alpha(0) \int_{\mathbb{S}^2} \omega_{\mathbb{S}^2} = 4\pi\alpha(0).$$

э

イロト 人間 とくほ とくほう

A Jacobian computation

By the Leibniz rule,

$$\mathsf{d}(\alpha \wedge u^{\sharp}\omega_{\mathbf{S}^{2}}) = \mathsf{d}\alpha \wedge u^{\sharp}\omega_{\mathbf{S}^{2}} + (-1)^{*}\alpha \wedge \mathsf{d}(u^{\sharp}\omega_{\mathbf{S}^{2}}) = \mathsf{d}\alpha \wedge u^{\sharp}\omega_{\mathbf{S}^{2}}.$$

By Stokes's formula,

$$\langle Ju_0, \alpha \rangle = -\lim_{\varepsilon \to 0} \int_{\mathbb{B}^3 \setminus B^3_{\varepsilon}} \mathsf{d}(\alpha \wedge u_0^{\sharp} \omega_{\mathbf{S}^2}) = \lim_{\varepsilon \to 0} \int_{\partial B^3_{\varepsilon}} \alpha \wedge u_0^{\sharp} \omega_{\mathbf{S}^2}.$$

Since α is smooth and u_0 is homogeneous,

$$\int_{\partial B^3_\varepsilon} \alpha \wedge u_0^\sharp \omega_{\mathbb{S}^2} \approx \alpha(0) \int_{\partial B^3_\varepsilon} u_0^\sharp \omega_{\mathbb{S}^2} = \alpha(0) \int_{\mathbb{S}^2} \omega_{\mathbb{S}^2} = 4\pi\alpha(0).$$

ъ

イロト 人間 とくほ とくほう

Characterizing the closure of smooth maps with the Jacobian

We have computed that $Ju_0 = 4\pi\delta_0$.

On the other hand, if $u \in \overline{C^{\infty}(\overline{\mathbb{B}^3}; \mathbb{S}^2)}^{W^{1,2}}$, then Ju = 0.

Theorem (Bethuel (1990))

$$\overline{C^{\infty}(\overline{\mathbb{B}^3};\mathbb{S}^2)}^{W^{1,2}} = \{ u \in W^{1,2}(\mathbb{B}^3;\mathbb{S}^2) : Ju = 0 \}$$

			=
Antoine Detaille (UCBL1 — ICJ)	Sobolev mappings to manifolds	The 29th of August 2024	10 / 14

Characterizing the closure of smooth maps with the Jacobian

We have computed that $Ju_0 = 4\pi\delta_0$.

On the other hand, if
$$u \in \overline{C^{\infty}(\overline{\mathbb{B}^3}; \mathbb{S}^2)}^{W^{1,2}}$$
, then $Ju = 0$.

Theorem (Bethuel (1990))

$$\overline{C^{\infty}(\overline{\mathbb{B}^3};\mathbb{S}^2)}^{W^{1,2}} = \{ u \in W^{1,2}(\mathbb{B}^3;\mathbb{S}^2) : Ju = 0 \}$$

Antoine Detaille (UCBL1 — ICJ)	Sobolev mappings to manifolds	The 29th of August 2024	10 / 14

Characterizing the closure of smooth maps with the Jacobian

We have computed that $Ju_0 = 4\pi\delta_0$.

On the other hand, if
$$u \in \overline{C^{\infty}(\overline{\mathbb{B}^3}; \mathbb{S}^2)}^{W^{1,2}}$$
, then $Ju = 0$.

Theorem (Bethuel (1990))

$$\overline{C^{\infty}(\overline{\mathbb{B}^3};\mathbb{S}^2)}^{W^{1,2}} = \{ u \in W^{1,2}(\mathbb{B}^3;\mathbb{S}^2) : Ju = 0 \}$$

Antoine I	Detaille (UCBL1 —	ICJ)
-----------	------------	---------	------

- Identify the topological singularities as ∂G_u ; see Giaquinta, Modica, and Souček.
- Define Sing *u* as a flat chain with values into a group; see Pakzad and Rivière.
- Identify the topological singularities using *scans*; see Hardt and Rivière.
- Extension to *W*^{*s*,*p*} with 0 < *s* < 1; see Bourgain, Brezis, and Mironescu; Bousquet and Mironescu; Mucci; and work in progress.

The problem is still widely open.

Antoine Detaille	e (UCBL1	-ICJ
------------------	----------	------

4 D N 4 B N 4 B N 4 B N

- Identify the topological singularities as ∂G_u ; see Giaquinta, Modica, and Souček.
- Define Sing *u* as a flat chain with values into a group; see Pakzad and Rivière.
- Identify the topological singularities using *scans*; see Hardt and Rivière.
- Extension to *W*^{*s*,*p*} with 0 < *s* < 1; see Bourgain, Brezis, and Mironescu; Bousquet and Mironescu; Mucci; and work in progress.

The problem is still widely open.

1

・ロット 御マ キョマ キョン

- Identify the topological singularities as ∂G_u ; see Giaquinta, Modica, and Souček.
- Define Sing *u* as a flat chain with values into a group; see Pakzad and Rivière.
- Identify the topological singularities using *scans*; see Hardt and Rivière.
- Extension to *W*^{*s*,*p*} with 0 < *s* < 1; see Bourgain, Brezis, and Mironescu; Bousquet and Mironescu; Mucci; and work in progress.

The problem is still widely open.

12

ヘロン 人間 とくほ とくほ とう

- Identify the topological singularities as ∂G_u ; see Giaquinta, Modica, and Souček.
- Define Sing *u* as a flat chain with values into a group; see Pakzad and Rivière.
- Identify the topological singularities using *scans*; see Hardt and Rivière.
- Extension to *W*^{*s,p*} with 0 < *s* < 1; see Bourgain, Brezis, and Mironescu; Bousquet and Mironescu; Mucci; and work in progress.

The problem is still widely open.

- Identify the topological singularities as ∂G_u ; see Giaquinta, Modica, and Souček.
- Define Sing *u* as a flat chain with values into a group; see Pakzad and Rivière.
- Identify the topological singularities using *scans*; see Hardt and Rivière.
- Extension to *W*^{*s,p*} with 0 < *s* < 1; see Bourgain, Brezis, and Mironescu; Bousquet and Mironescu; Mucci; and work in progress.

The problem is still widely open.

The weak density problem

Definition

We say that $(u_n)_{n \in \mathbb{N}}$ in $W^{1,p}(\Omega; \mathcal{N})$ converges weakly to $u \in W^{1,p}(\Omega; \mathcal{N})$, and we write $u_n \rightarrow u$, whenever $u_n \rightarrow u$ almost everywhere and there exists C > 0 such that $\int_{\Omega} |Du_n|^p \leq C$ for every $n \in \mathbb{N}$.

Question

When is $C^{\infty}(\overline{\Omega}; \mathcal{N})$ sequentially weakly dense in $W^{1,p}(\Omega; \mathcal{N})$?

Antoine Detail	le (UCBL1	— ICJ)
----------------	-----------	--------

不得た かきた かきた

• When $p \notin \mathbb{N}$, same as strong density.

- Always true when \mathcal{N} is (p 1)-connected; see Hajłasz (1994).
- True for more general manifolds when p = 2; see Pakzad and Rivière (2003).
- Counterexample in $W^{1,3}(\mathbb{B}^4; \mathbb{S}^2)$; see Bethuel (2020).

3

・ロット 御マ キョマ キョン

- When $p \notin \mathbb{N}$, same as strong density.
- Always true when \mathcal{N} is (p 1)-connected; see Hajłasz (1994).
- True for more general manifolds when p = 2; see Pakzad and Rivière (2003).
- Counterexample in $W^{1,3}(\mathbb{B}^4; \mathbb{S}^2)$; see Bethuel (2020).

13/14

- When $p \notin \mathbb{N}$, same as strong density.
- Always true when \mathcal{N} is (p 1)-connected; see Hajłasz (1994).
- True for more general manifolds when p = 2; see Pakzad and Rivière (2003).

• Counterexample in $W^{1,3}(\mathbb{B}^4; \mathbb{S}^2)$; see Bethuel (2020).

- When $p \notin \mathbb{N}$, same as strong density.
- Always true when \mathcal{N} is (p 1)-connected; see Hajłasz (1994).
- True for more general manifolds when p = 2; see Pakzad and Rivière (2003).
- Counterexample in $W^{1,3}(\mathbb{B}^4; \mathbb{S}^2)$; see Bethuel (2020).

13/14

Thank you for your attention!

Antoine	Detaille	(UCBL1 —	ICJ)
---------	----------	----------	------

・ロト ・ 日本・ ・ ヨト・