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Abstract

We present two new families of integral inequalities involving Sobolev seminorms
associated with compact Sobolev embeddings. These inequalities quantify the fact that,
on “many” small balls of a given domain, quantitative Sobolev embeddings are “much
better” than predicted by scaling arguments.

Une version quantitative des inégalités de Sobolev
sous-optimales

Résumé

On présente deux nouvelles familles d’inégalités intégrales impliquant des semi-
normes de Sobolev, associées aux injections de Sobolev compactes. Ces inégalités quan-
tifient le fait que, sur « un grand nombre » de boules contenues dans un domaine fixé,
les inégalités de Sobolev quantitatives se comportent « bien mieux » que suggéré par un
argument de mise à l’échelle.

1 Introduction and notation

Let 𝛺 ⊂ ℝ𝑁 be a domain, 0 ≤ 𝑠 < ∞, and 1 ≤ 𝑝 ≤ ∞. We define the following seminorm
on the space𝑊 𝑠,𝑝(𝛺):

|𝑢 |𝑝
𝑊 𝑠,𝑝(𝛺) =


∫
ℝ𝑁

∫
𝛺ℎ

|Δ𝑚
ℎ
𝑢(𝑧)|𝑝

|ℎ |𝑁+𝑠𝑝 d𝑧 dℎ, if 𝑠 ∉ ℕ∫
𝛺
|𝐷𝑠𝑢 |𝑝 , if 𝑠 ∈ ℕ

, (1.1)
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(with the obvious modifications when 𝑝 = ∞). In the above: (i) Δ𝑚
ℎ
𝑢 denotes the 𝑚-th order

difference operator of step ℎ applied to 𝑢; (ii) 𝑚 = 𝑚(𝑠) ≔ ⌈𝑠⌉ is the smallest integer > 𝑠; (iii)
𝛺ℎ = 𝛺ℎ,𝑚 is the set of all 𝑥 ∈ 𝛺 such that [𝑥, 𝑥 + 𝑚ℎ] ⊂ 𝛺. (We recall that Δ𝑘

ℎ
𝑢 is defined

by induction on 𝑘 as follows: Δ0
ℎ
𝑢 = 𝑢 and Δ𝑘+1

ℎ
𝑢(𝑧) = Δ𝑘

ℎ
𝑢(𝑧 + ℎ) − Δ𝑘

ℎ
𝑢(𝑧).) We note that

the above definition includes the value 𝑠 = 0, in which case 𝑊0,𝑝 is identified with 𝐿𝑝 , and
|𝑢 |𝑊0,𝑝 = ∥𝑢∥𝑝 .

In what follows, we consider parameters satisfying

0 ≤ 𝛼 < 𝑠 < ∞, 1 ≤ 𝑝 < ∞, 1 ≤ 𝑞 ≤ ∞, 𝛼 − 𝑁

𝑞
< 𝑠 − 𝑁

𝑝
. (1.2)

For such parameters, and if 𝜔 ⊂ ℝ𝑁 is a“sufficiently smooth” domain (Lipschitz bounded
suffices), we have the well-known Sobolev embedding 𝑊 𝑠,𝑝(𝜔) ↩→ 𝑊𝛼,𝑞(𝜔). Moreover, we
have Sobolev-type inequalities involving seminorms. In order to give examples of such
inequalities, let ℓ be the largest integer < 𝑠, i.e.,

ℓ = ℓ (𝑠) ≔
{
⌊𝑠⌋, if 𝑠 is not an integer
𝑠 − 1, if 𝑠 is an integer

. (1.3)

Denote by 𝒫ℓ the set of all polynomials in ℝ[𝑋1, . . . , 𝑋𝑁] of degree at most ℓ (that we
identify with the set of corresponding polynomial functions on 𝜔). If, for example, 𝜔 = 𝐵𝑟(𝑥)
is a ball, then we have the following Sobolev inequality:

inf
𝑃∈𝒫ℓ

|𝑢 − 𝑃 |𝑊𝛼,𝑞(𝐵𝑟(𝑥)) ≤ 𝐶𝑟𝛽 |𝑢 |𝑊 𝑠,𝑝(𝐵𝑟(𝑥)) (1.4)

for some finite constant 𝐶 depending on the parameters in (1.2), but not on 𝑟 or 𝑥. Here,

𝛽 ≔ 𝑠 − 𝛼 − 𝑁
(
1
𝑝
− 1
𝑞

)
. (1.5)

When 𝑟 = 1 and 𝑥 = 0, the inequality (1.4) is deduced from the usual Sobolev inequality
for the full𝑊 𝑠,𝑝 norm on 𝔹𝑁 , combined with the Poincaré inequality

inf
𝑃∈𝒫ℓ

∥𝑢 − 𝑃∥𝑝 ≤ 𝐶 |𝑢 |𝑊 𝑠,𝑝 , ∀𝑢 : 𝔹𝑁 → ℝ.

(We recall that the quantity ∥𝑢∥𝑝 + |𝑢 |𝑊 𝑠,𝑝 is equivalent to the usual Sobolev norm on 𝔹𝑁 .)
The case of a general 𝑟 and 𝑥 follows by a scaling argument.

We consider next a general domain𝛺 and the collection of balls contained in𝛺, described
by the set

𝑈 ≔ {(𝑥, 𝑟): 𝑥 ∈ 𝛺, 𝑟 > 0, 𝐵𝑟(𝑥) ⊂ 𝛺}.

As a consequence of (1.4), we have

inf
𝑃∈𝒫ℓ

|𝑢 − 𝑃 |𝑊𝛼,𝑞(𝐵𝑟(𝑥)) ≤ 𝐶𝑟𝛽 |𝑢 |𝑊 𝑠,𝑝(𝛺), ∀ (𝑥, 𝑟) ∈ 𝑈 . (1.6)
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Once we fix (𝑥, 𝑟) ∈ 𝑈 , the estimate (1.6) cannot be improved. Indeed, it suffices to start
from a non-trivial bump function 𝜑 and to test (1.6) with 𝑢 ≔ 𝜑((· − 𝑥)/𝑟).

The purpose of this note is to exhibit a number of (in general, integral) inequalities showing that,
for “many” couples (𝑥, 𝑟) ∈ 𝑈 , estimate (1.6) can be dramatically improved.

The next section provides a prototypical example of such inequalities, inspired by an
inequality of J. Van Schaftingen presented in [3, equation (1.6)].

2 A model inequality

We consider parameters as in (1.2) and (1.5) and we let ℓ = ℓ (𝑠) as in (1.3). Consider some
additional parameter 𝑡 such that

𝑝 ≤ 𝑡 ≤ ∞. (2.1)

Proposition 2.1. Assume that 𝑠 > 0 is not an integer. Then there exists a finite constant 𝐶 =

𝐶(𝛼, 𝑠 , 𝑝, 𝑞, 𝑁) such that(∫
𝑈

inf𝑃∈𝒫ℓ |𝑢 − 𝑃 |𝑡
𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽𝑡
1

𝑟𝑁+1 d𝑥 d𝑟
)1/𝑡

≤ 𝐶 |𝑢 |𝑊 𝑠,𝑝(𝛺) (2.2)

(with the obvious modification when 𝑡 = ∞).

Remark 2.2. In Proposition 2.1 and its counterparts stated below, the implicit assumption on
𝑢 : 𝛺 → ℝ is that |𝑢 |𝑊 𝑠,𝑝(𝛺) < ∞. This ensures that

𝑈 ∋ (𝑥, 𝑟) ↦→ inf
𝑃∈𝒫ℓ

|𝑢 − 𝑃 |𝑊𝛼,𝑞(𝐵𝑟(𝑥))

is continuous. (This assertion can be easily proved by using the continuity of dilations and
translations in Sobolev spaces and the fact that 𝒫ℓ is a finite dimensional normed space.)
Therefore, in what follows we do not discuss any measurability issue. □

Remark 2.3. Estimate (2.2) with 𝑡 = 𝑝 implies that, for almost every 𝑥 ∈ 𝛺 and every positive
constant 𝐾, the set{

𝑟: 𝑟 > 0, 𝐵𝑟(𝑥) ⊂ 𝛺, inf
𝑃∈𝒫ℓ

|𝑢 − 𝑃 |𝑊𝛼,𝑞(𝐵𝑟(𝑥)) > 𝐾𝑟𝛽+𝑁/𝑝 |𝑢 |𝑊 𝑠,𝑝(𝛺)

}
has zero density at 𝑟 = 0, and thus, for “most” of small 𝑟 > 0 it holds that

inf
𝑃∈𝒫ℓ

|𝑢 − 𝑃 |𝑊𝛼,𝑞(𝐵𝑟(𝑥)) ≤ 𝐾𝑟𝛽+𝑁/𝑝 |𝑢 |𝑊 𝑠,𝑝(𝛺),

which is a significant improvement of (1.6). □

Proof of Proposition 2.1. We start by noting that it suffices to prove (2.2) at the endpoints 𝑡 = 𝑝

and 𝑡 = ∞. The intermediate case 𝑡 < 𝑝 < ∞ then follows (with a constant 𝐶 independent of
𝑡) via the Hölder inequality.
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When 𝑡 = ∞, (2.2) is nothing but (1.6). Let next 𝑡 = 𝑝. Consider some 𝑠̃ sufficiently close
to 𝑠 such that

max(ℓ , 𝛼) < 𝑠̃ < 𝑠 (2.3)

and

𝛽̃ ≔ 𝑠̃ − 𝛼 − 𝑁
(
1
𝑝
− 1
𝑞

)
> 0. (2.4)

For such 𝑠̃ we have, thanks to the Sobolev inequality (1.4),

inf
𝑃∈𝒫ℓ

|𝑢 − 𝑃 |𝑊𝛼,𝑞(𝐵𝑟(𝑥)) ≲ 𝑟
𝛽̃ |𝑢 |𝑊 𝑠̃ ,𝑝(𝐵𝑟(𝑥)), ∀ (𝑥, 𝑟) ∈ 𝑈 . (2.5)

Let 𝛿 ≔ 𝛽 − 𝛽̃ = 𝑠 − 𝑠̃ > 0. Using (2.5), the fact that 𝛽 = 𝛿 + 𝛽̃, and the definition (1.1), we
obtain∫

𝑈

inf𝑃∈𝒫ℓ |𝑢 − 𝑃 |𝑝
𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽𝑝
1

𝑟𝑁+1 d𝑥 d𝑟

≲

∫
𝑈

1
𝑟𝛿𝑝+𝑁+1

∫
ℝ𝑁

∫
(𝐵𝑟(𝑥))ℎ

|Δ𝑚
ℎ
𝑢(𝑧)|𝑝

|ℎ |𝑁+𝛽̃𝑝
d𝑧 dℎ d𝑥 d𝑟 ≕ 𝐽.

(2.6)

We next note that, if (𝑥, 𝑟) ∈ 𝑈 , ℎ ∈ ℝ𝑁 , and 𝑧 ∈ (𝐵𝑟(𝑥))ℎ , then 𝑧 ∈ 𝛺ℎ , 𝑥 ∈ 𝐵𝑟(𝑧), and
𝑟 > |ℎ |/2. Therefore, Tonelli’s theorem implies that

𝐽 ≤
∫
ℝ𝑁

∫
𝛺ℎ

|Δ𝑚
ℎ
𝑢(𝑧)|𝑝

|ℎ |𝑁+𝛽̃𝑝

∫ ∞

|ℎ |/2

∫
𝐵𝑟(𝑧)

d𝑥 1
𝑟𝛿𝑝+𝑁+1 d𝑟 d𝑧 dℎ

≲

∫
ℝ𝑁

∫
𝛺ℎ

|Δ𝑚
ℎ
𝑢(𝑧)|𝑝

|ℎ |𝑁+𝛽̃𝑝

∫ ∞

|ℎ |/2

1
𝑟𝛿𝑝+1 d𝑟 d𝑧 dℎ ≲

∫
ℝ𝑁

∫
𝛺ℎ

|Δ𝑚
ℎ
𝑢(𝑧)|𝑝

|ℎ |𝑁+𝛽̃𝑝+𝛿𝑝
d𝑧 dℎ.

(2.7)

Recalling (1.1) and the fact that 𝛽 = 𝛿 + 𝛽̃, we obtain (2.2) with 𝑡 = 𝑝 from (2.6) and
(2.7). □

In the next section, we investigate the counterpart of estimate (2.2) when 𝑠 is an integer.
As we will see, new phenomena occur in this case.

3 The case where 𝑠 is an integer

We consider again parameters as in (1.2), (1.5), and (2.1), with 𝑠 integer (and thus ℓ = 𝑠−1).
We investigate whether (2.2) holds in this setting. This is indeed the case at the endpoint
𝑡 = ∞ (see (1.6)). However, (2.2) fails at the other endpoint, 𝑡 = 𝑝. This is a consequence of
the following result.

Lemma 3.1. Let 0 ≤ ℓ < 𝑠 be integers. Let 0 ≤ 𝛼 ≤ 𝑠 and 1 ≤ 𝑞 ≤ ∞. Let 𝑢(𝑥) ≔ 𝑥𝑠1,
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∀ 𝑥 = (𝑥1, . . . , 𝑥𝑁 ) ∈ ℝ𝑁 . Then there exists a finite constant 𝐶 = 𝐶(ℓ , 𝑠 , 𝛼, 𝑞, 𝑁) such that

inf
𝑃∈𝒫ℓ

|𝑢 − 𝑃 |𝑊𝛼,𝑞(𝐵𝑟(𝑥)) ≥ 𝐶𝑟𝑁/𝑞+𝑠−𝛼 = 𝐶𝑟𝛽−𝑁/𝑝 , ∀ 𝑟 > 0,∀ 𝑥 ∈ ℝ𝑁 . (3.1)

The same holds for any non-zero polynomial 𝑢 ∈ ℝ[𝑋1, . . . , 𝑋𝑁], homogeneous of degree 𝑠.

Corollary 3.2. Let 𝛺 ⊂ ℝ𝑁 be any non-empty bounded domain. Under the assumptions (1.2) and
with 𝛽 as in (1.5), the above 𝑢 belongs to𝑊 𝑠,𝑝(𝛺), but satisfies∫

{𝑟>0:𝐵𝑥(𝑟)⊂𝛺}

inf𝑃∈𝒫ℓ |𝑢 − 𝑃 |𝑝
𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽𝑝
1

𝑟𝑁+1 d𝑟 = ∞, ∀ 𝑥 ∈ 𝛺.

In particular, we have∫
𝑈

inf𝑃∈𝒫ℓ |𝑢 − 𝑃 |𝑝
𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽𝑝
1

𝑟𝑁+1 d𝑥 d𝑟 = ∞.

Proof of Lemma 3.1. We first investigate the case where 𝛼 < 𝑠. Consider the finite dimensional
vector space 𝐸 ≔ ℝ𝑢 +𝒫ℓ . Then 𝑔 ↦→ |𝑔 |𝑊𝛼,𝑞(𝔹𝑁 ) is a norm on 𝐸 (since 𝛼 < 𝑠). Since 𝑢 ∉ 𝒫ℓ ,
there exists some constant 𝐶 > 0 such that

inf
𝑃∈𝒫ℓ

|𝑢 − 𝑃 |𝑊𝛼,𝑞(𝔹𝑁 ) ≥ 𝐶. (3.2)

Estimate (3.1) (with 𝐶 the constant in (3.2)) follows from (3.2) via a suitable affine homo-
thety.

The case where 𝛼 = 𝑠 is similar: (3.2) follows from the identity

|𝑢 − 𝑃 |𝑊𝛼,𝑞(𝔹𝑁 ) = 𝐶 > 0, ∀𝑃 ∈ 𝒫ℓ . □

As we will see below, this limiting case is the only pathological one when 𝑝 > 1, while
the case where 𝑝 = 1 is more involved.

We present below two approaches allowing to settle the case where 𝑝 > 1. The first one
relies on a weak 𝐿𝑝-estimate and interpolation, requires no smoothness of 𝛺, and fails for
𝑝 = 1. The second one relies on Sobolev embeddings (whence a smoothness assumption on
𝛺); it also works when 𝑝 = 1, but only if 𝑁 ≥ 2. The case where 𝑝 = 1 and 𝑁 = 1 requires
a separate argument; in this situation, we actually show that the counterpart of (2.2) fails, in
the whole range 𝑝 ≤ 𝑡 ≤ ∞.

In order to understand the statement of the weak 𝐿𝑝-estimate valid when 𝑡 = 𝑝, it is con-
venient to rephrase the inequality provided by Proposition 2.1. Consider, on𝑈 , the measure

𝜇 ≔
1

𝑟𝑁+1 d𝑥 d𝑟. Then Proposition 2.1 asserts that the map

𝑈 ∋ (𝑥, 𝑟) ↦→ 𝐺𝑢(𝑥, 𝑟) ≔
inf𝑃∈𝒫ℓ |𝑢 − 𝑃 |𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽
(3.3)
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satisfies

∥𝐺𝑢 ∥𝐿𝑡(𝑈,𝜇) ≤ 𝐶 |𝑢 |𝑊 𝑠,𝑝(𝛺). (3.4)

The next result provides a weak version of (3.4) when 𝑡 = 𝑝 > 1.

Proposition 3.3. Assume that 𝑠 is an integer and 𝑝 > 1. Then there exists a finite constant
𝐶 = 𝐶(𝛼, 𝑠 , 𝑝, 𝑞, 𝑁) such that

∥𝐺𝑢 ∥𝐿𝑝,𝑤(𝑈,𝜇) ≤ 𝐶 |𝑢 |𝑊 𝑠,𝑝(𝛺).

Equivalently, Proposition 3.3 asserts that the set

𝐸𝑢,𝜆 ≔

{
(𝑥, 𝑟) ∈ 𝑈 :

inf𝑃∈𝒫ℓ |𝑢 − 𝑃 |𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽
> 𝜆

}
(3.5)

satisfies

𝜇(𝐸𝑢,𝜆) ≤ 𝐶𝑝
|𝑢 |𝑝

𝑊 𝑠,𝑝(𝛺)
𝜆𝑝

.

Let us note that, in the scale of Lorentz spaces, the conclusion of Proposition 3.3 is optimal.
Indeed, the map 𝑢 considered in Lemma 3.1 satisfies, for each 0 < 𝜎 < ∞, 𝐺𝑢 ∉ 𝐿𝑝,𝜎(𝑈, 𝜇).

Proof of Proposition 3.3. The proof relies on the following obvious inequality. If 𝑓 : 𝛺 → ℝ is
measurable, (𝑥, 𝑟) ∈ 𝑈 , and 0 < 𝑝̃ < ∞, then

∥ 𝑓 ∥𝐿𝑝̃(𝐵𝑟(𝑥)) ≤ 𝐶𝑟𝑁/𝑝̃[ℳ(| 𝑓 | 𝑝̃)(𝑥)]1/𝑝̃ , (3.6)

where ℳ denotes the (centered or uncentered) maximal operator and the finite constant 𝐶
depends only on 𝑝̃ and 𝑁 .

Let 1 ≤ 𝑝̃ < 𝑝 be sufficiently close to 𝑝 in order to have

𝛽̃ ≔ 𝑠 − 𝛼 − 𝑁
(
1
𝑝̃
− 1
𝑞

)
> 0, (3.7)

and thus𝑊 𝑠,𝑝̃(𝐵𝑟(𝑥)) ↩→𝑊𝛼,𝑞(𝐵𝑟(𝑥)). For such 𝑝̃ and (𝑥, 𝑟) ∈ 𝑈 we have, via (1.4) and (3.6),

inf
𝑃∈𝒫ℓ

|𝑢 − 𝑃 |𝑊𝛼,𝑞(𝐵𝑟(𝑥)) ≲ 𝑟
𝛽̃ |𝑢 |𝑊 𝑠,𝑝̃(𝐵𝑟(𝑥)) ≲ 𝑟

𝛽̃+𝑁/𝑝̃[ℳ(|𝐷𝑠𝑢 | 𝑝̃)(𝑥)]1/𝑝̃ . (3.8)

Recalling (3.3), (1.5), and (3.7), we find from (3.8) that

𝐺𝑢(𝑥, 𝑟) ≲ 𝑟𝑁/𝑝[ℳ(|𝐷𝑠𝑢 | 𝑝̃)(𝑥)]1/𝑝̃ , ∀ (𝑥, 𝑟) ∈ 𝑈 . (3.9)

In turn, estimate (3.9) implies that, for every 𝑥 ∈ 𝛺, the section

𝐸𝑢,𝜆,𝑥 ≔ {𝑟 > 0: (𝑥, 𝑟) ∈ 𝐸𝑢,𝜆} (3.10)
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of 𝐸𝑢,𝜆 satisfies

𝑟𝑁 ≳
𝜆𝑝

[ℳ(|𝐷𝑠𝑢 | 𝑝̃)(𝑥)]𝑝/𝑝̃
, ∀ 𝑟 ∈ 𝐸𝑢,𝜆,𝑥 ,

and therefore∫
𝐸𝑢,𝜆,𝑥

1
𝑟𝑁+1 d𝑟 ≲ inf

𝑟∈𝐸𝑢,𝜆,𝑥

1
𝑟𝑁
≲

1
𝜆𝑝

[ℳ(|𝐷𝑠𝑢 | 𝑝̃)(𝑥)]𝑝/𝑝̃ , ∀ 𝑥 ∈ 𝛺. (3.11)

Integrating (3.11) with respect to 𝑥, we find that

𝜇(𝐸𝑢,𝜆) ≲
1
𝜆𝑝

∫
𝛺
[ℳ(|𝐷𝑠𝑢 | 𝑝̃)(𝑥)]𝑝/𝑝̃ ≲ 1

𝜆𝑝
∥|𝐷𝑠𝑢 |∥𝑝

𝐿𝑝(𝛺) =
1
𝜆𝑝

|𝑢 |𝑝
𝑊 𝑠,𝑝(𝛺),

where the second inequality follows from the maximal function theorem. □

Remark 3.4. An inspection of the above proof shows that we have proved more than stated
in Proposition 3.3. More specifically, (3.11) combined with the maximal function theorem
yields the following. With 𝐺𝑢 as in (3.3), there exists a bounded sublinear operator 𝑇 :
𝑊 𝑠,𝑝(𝛺) → 𝐿𝑝(𝛺; [0,∞]) such that∫

{𝑟>0:𝐺𝑢(𝑥,𝑟)>𝜆}

1
𝑟𝑁+1 d𝑟 ≤ [𝑇𝑢(𝑥)]𝑝

𝜆𝑝
, ∀𝑢 ∈𝑊 𝑠,𝑝(𝛺),∀ 𝑥 ∈ 𝛺,∀𝜆 > 0.

(Indeed, 𝑇𝑢(𝑥) ≔ 𝐶[ℳ(|𝐷𝑠𝑢 | 𝑝̃(𝑥)]1/𝑝̃ has, for sufficiently large 𝐶, the above properties.) □

By interpolation, we deduce from Proposition 3.3 the following result.

Proposition 3.5. Assume that 𝑠 is an integer. Let 𝑝 < 𝑡 ≤ ∞, and assume: either (i) 𝑝 > 1, or (ii)
𝑡 = ∞. Then there exists a finite constant 𝐶 = 𝐶(𝛼, 𝑠 , 𝑝, 𝑞, 𝑁, 𝑡) such that(∫

𝑈

inf𝑃∈𝒫ℓ |𝑢 − 𝑃 |𝑡
𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽𝑡
1

𝑟𝑁+1 d𝑥 d𝑟
)1/𝑡

≤ 𝐶 |𝑢 |𝑊 𝑠,𝑝(𝛺) (3.12)

(with the obvious modification when 𝑡 = ∞).

Let us note that, by contrast with Proposition 2.1, the constant 𝐶 in (3.12) must depend on
𝑡. (This follows from Corollary 3.2.) The case 𝑡 = ∞ can be obtained without the assumption
𝑝 > 1, as it does not rely on Proposition 3.3 but only on the Sobolev inequality (1.6).

Proof. The case 𝑡 = ∞ amounts to (1.6). Let 𝑝 < 𝑡 < ∞. By (a very easy part of) the
Marcinkiewicz interpolation theorem, we have

∥𝐺𝑢 ∥𝐿𝑡(𝑈,𝜇) ≤ 𝐶(𝑝, 𝑡)∥𝐺𝑢 ∥𝑝/𝑡𝐿𝑝,𝑤(𝑈,𝜇)∥𝐺𝑢 ∥
1−𝑝/𝑡
𝐿∞(𝑈,𝜇) ≲ |𝑢 |𝑊 𝑠,𝑝(𝛺),

where for the last inequality we have used Proposition 3.3 and (1.6). □

We next turn to the case where 𝑠 is an integer and 𝑝 = 1. We first prove that, when 𝑁 ≥ 2,
the conclusion of Proposition 3.5 still holds in this setting.
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Proposition 3.6. Let 𝛺 be a Lipschitz bounded domain. Assume that 𝑠 is an integer and 𝑁 ≥ 2. Let
1 < 𝑡 ≤ ∞. Then there exists a finite constant 𝐶 = 𝐶(𝛼, 𝑠 , 𝑞,𝛺, 𝑡) such that(∫

𝑈

inf𝑃∈𝒫ℓ |𝑢 − 𝑃 |𝑡
𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽𝑡
1

𝑟𝑁+1 d𝑥 d𝑟
)1/𝑡

≤ 𝐶 |𝑢 |𝑊 𝑠,1(𝛺) (3.13)

(with the obvious modification when 𝑡 = ∞). Similarly if 𝐷𝑠𝑢 is a finite Borel measure.

Proof. When 𝑡 = ∞, (3.13) amounts to (1.6) and thus holds true. It therefore suffices to find
some 𝜀 = 𝜀(𝛼, 𝑞, 𝑁) > 0 such that (3.13) holds when 1 < 𝑡 < 1 + 𝜀, and finish the proof via

the Hölder inequality (as in the proof of Proposition 2.1). For 1 < 𝑡 <
𝑁

𝑁 − 1, define 𝑠̃ > 𝑠 − 1
through the equation

𝑠̃ − 𝑁

𝑡
= 𝑠 − 𝑁

1 . (3.14)

Since 𝑁 ≥ 2, we have the embedding 𝑊 𝑠,1(𝔹𝑁 ) ↩→ 𝑊 𝑠̃ ,𝑡(𝔹𝑁 ). (See V.A. Solonnikov [4]
when 𝑠 = 1. The case where 𝑠 ≥ 2 is a straightforward consequence of the case where 𝑠 = 1.)
In view of (3.14) and of the fact that 𝑠 > 𝛼, for sufficiently small 𝜀 > 0, if 1 < 𝑡 < 1 + 𝜀 then
𝑠̃ > 𝛼. For such 𝑡, Proposition 2.1 implies that(∫

𝑈

inf𝑃∈𝒫ℓ |𝑢 − 𝑃 |𝑡
𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽𝑡
1

𝑟𝑁+1 d𝑥 d𝑟
)1/𝑡
≲ |𝑢 |𝑊 𝑠̃ ,𝑡(𝛺). (3.15)

(We note that, by (1.2), (1.6), and (3.14), the constant 𝛽 in (3.15) is the same as the one in (1.5).)
On the other hand, 𝛺 being Lipschitz and bounded, we have the embedding𝑊 𝑠,1(𝛺) ↩→

𝑊 𝑠̃ ,𝑡(𝛺). Since, moreover, 𝛺 is connected and 𝑠̃ > 𝑠 − 1, we have the Sobolev inequality

|𝑢 |𝑊 𝑠̃ ,𝑡(𝛺) ≲ |𝑢 |𝑊 𝑠,1(𝛺) (3.16)

(which is an avatar of (1.4)).
We obtain (3.13) from (3.15) and (3.16).
Finally, once we know that (3.13) holds when 𝐷𝑠𝑢 ∈ 𝐿1(𝛺), the validity of its analogue

when𝐷𝑠𝑢 is a finite Borel measure is established via a standard procedure, based on smooth-
ing and the Fatou lemma. □

Remark 3.7. In the statement of Proposition 3.6, the assumption that 𝛺 is Lipschitz and
bounded can be relaxed to the requirement that the estimate (3.16) holds for 𝑡 sufficiently
close to 1.
On the other hand, the proof of Proposition 3.6 provides an alternative proof of Proposition
3.5 under the (superfluous) extra assumption that 𝛺 is Lipschitz and bounded. □

Question 3.8. Is it true that the conclusion of Proposition 3.6 holds in any domain 𝛺 (without
any smoothness assumption)?

Question 3.9. Unlike the proof of Proposition 3.5, which relies on the limiting weak-type
estimate provided by Proposition 3.3 when 𝑡 = 𝑝, the proof of Proposition 3.6 provides
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directly a strong-type estimate when 𝑡 > 𝑝, but says nothing about 𝑡 = 𝑝. Is there a weak-type
estimate in the limiting case 𝑡 = 𝑝 = 1, that is, does the counterpart of Proposition 3.3 hold
when 𝑝 = 1?

When 𝑁 = 1, the proof of Proposition 3.6 breaks down due to the non-embedding of
𝑊1,1 in 𝑊1/𝑝,𝑝 when 𝑝 > 1. Actually, the situation is more dramatic: the conclusion of
Proposition 3.6 fails when 𝑁 = 1, as Corollary 3.11 below shows — except if 𝑡 = ∞, which is
covered by Proposition 3.5.

Lemma 3.10. Let 𝑁 = 1, 𝑠 ≥ 1 be an integer, 𝑝 = 1, 𝛺 = (−1, 1), and 1 ≤ 𝑡 < ∞. Let 𝑢 be a map
in 𝛺 such that 𝑢(𝑥) = 0 if 𝑥 ≤ 0 and 𝑢(𝑥) = 𝑥𝑠−1 if 0 < 𝑥 ≤ 1/2. Then, with 𝐺𝑢 as in (3.3), we
have ∥𝐺𝑢 ∥𝐿𝑡 ,𝑤(𝑈,𝜇) = ∞.

Corollary 3.11. Let 𝑁 = 1, 𝑠 ≥ 1 an integer, 𝑝 = 1, and 1 ≤ 𝑡 < ∞. Then there exists some
𝑢 ∈𝑊 𝑠,1(𝛺) such that ∥𝐺𝑢 ∥𝐿𝑡 ,𝑤(𝑈,𝜇) = ∞.

Proof of Lemma 3.10. If 𝑟 < 1/4 and |𝑥 | ≤ 𝑟/2, then 𝐵𝑟(𝑥) ⊃ 𝐵𝑟/2(0), and therefore, for some
𝐶 > 0, we have

inf
𝑃∈𝒫ℓ

|𝑢 − 𝑃 |𝑊𝛼,𝑞(𝐵𝑟(𝑥)) ≥ inf
𝑃∈𝒫ℓ

|𝑢 − 𝑃 |𝑊𝛼,𝑞(𝐵𝑟/2(0)) = 𝐶𝑟1/𝑞+𝑠−1−𝛼 = 𝐶𝑟𝛽, (3.17)

where we have used: (i) a scaling argument for the first equality; (ii) the fact that 𝑢 is not a
polynomial near the origin to justify the fact that 𝐶 > 0; (iii) (1.5).

We find that

𝐺𝑢(𝑥, 𝑟) ≥ 𝜆 for every 0 < 𝜆 < 𝐶, 0 < 𝑟 < 1/4, |𝑥 | < 𝑟/2.

Therefore, if 𝜆 < 𝐶 and 𝐸𝑢,𝜆 is as in (3.5), then we have

𝜇(𝐸𝑢,𝜆) ≳
∫ 1/4

0

∫
{|𝑥 |<𝑟/2}

1
𝑟2 d𝑥 d𝑟 =

∫ 1/4

0

1
𝑟

d𝑟 = ∞. □

Sketch of proof of Corollary 3.11. Consider a function 𝑢 as in Lemma 3.10, with the additional
properties that 𝑢 is compactly supported and 𝐷𝑠𝑢 is a finite Borel measure. By smoothing
and the Fatou lemma, there exists a sequence (𝑣 𝑗) ⊂ 𝐶∞

c ((−1, 1)) such that ∥𝑣(𝑠)
𝑗
∥𝐿1 ≤ 1 and

∥𝐺𝑣 𝑗 ∥𝐿𝑡 ,𝑤(𝑈,𝜇) → ∞. By rescaling and translating these maps, there exist mutually disjoint
intervals 𝐼𝑘 ⊂ 𝛺 and maps 𝑢𝑘 ∈ 𝐶∞

c (𝐼𝑘) such that ∥𝑢(𝑠)
𝑘
∥𝐿1 ≤ 2−𝑘 and ∥𝐺𝑢𝑘 ∥𝐿𝑡 ,𝑤(𝑈𝑘 ,𝜇) → ∞

(where 𝑈𝑘 is the set 𝑈 adapted to 𝐼𝑘). Then 𝑢 ≔
∑
𝑘 𝑢𝑘 satisfies the requirements of the

corollary. □

4 Two-norms families of inequalities

The inequalities presented in Sections 2 and 3 involve the 𝐿𝑡 norm on 𝑈 with respect to

the measure 𝜇 =
1

𝑟𝑁+1 d𝑥 d𝑟. One may wonder whether there exists a more general family of
inequalities that would involve: (i) the 𝐿𝑡1 norm with respect to some weighted measure in
the variable 𝑟; (ii) the 𝐿𝑡2 norm with respect to the measure d𝑥 in the variable 𝑥, that would
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specialize to the results in Section 2 when 𝑡1 = 𝑡 = 𝑡2. This is the main topic of this section.
In this perspective, the relevant substitutes of𝑈 are its sections

𝑈𝑥 ≔ {𝑟 > 0: 𝐵𝑟(𝑥) ⊂ 𝛺}, 𝑥 ∈ 𝛺, and𝑈 𝑟 ≔ {𝑥 ∈ 𝛺: 𝐵𝑟(𝑥) ⊂ 𝛺}, 𝑟 > 0.

Case 1. 𝑡1 ≤ 𝑡2. As in the previous sections, we start with the fractional regularity case. We
keep the same notation as above.

Proposition 4.1. Assume that 𝑠 > 0 is not an integer.

(1) Let 𝑝 ≤ 𝑡1 ≤ 𝑡2 < ∞. Then there exists a finite constant 𝐶 = 𝐶(𝛼, 𝑠 , 𝑝, 𝑞, 𝑁, 𝑡1) such that(∫
𝛺

(∫
𝑈𝑥

inf𝑃∈𝒫ℓ (𝐵𝑟(𝑥)) |𝑢 − 𝑃 |𝑡1
𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽𝑡1

1
𝑟𝑁𝑡1/𝑡2+1

d𝑟
) 𝑡2/𝑡1

d𝑥
)1/𝑡2

≤ 𝐶 |𝑢 |𝑊 𝑠,𝑝(𝛺). (4.1)

(2) Let 𝑝 ≤ 𝑡1 < ∞. Then there exists a finite constant 𝐶 = 𝐶(𝛼, 𝑠 , 𝑝, 𝑞, 𝑁, 𝑡1) such that(∫
𝑈𝑥

inf𝑃∈𝒫ℓ (𝐵𝑟(𝑥)) |𝑢 − 𝑃 |𝑡1
𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽𝑡1

1
𝑟

d𝑟
)1/𝑡1

≤ 𝐶 |𝑢 |𝑊 𝑠,𝑝(𝛺), ∀ 𝑥 ∈ 𝛺. (4.2)

Remark 4.2. Estimate (4.2) is, formally, the limiting case 𝑡2 = ∞ of (4.1). Similar remarks for
Propositions 4.3, 4.4, 4.7, 4.8 below. □

Proof. (1) For the comfort of notation, here and in all the proofs of this section, we denote by
𝐼 the left-hand side of the inequality to be shown.

Let 𝑠̃ be such that (2.3) and (2.4) hold. Then, thanks to (1.4) and (2.5), we have

inf𝑃∈𝒫ℓ (𝐵𝑟(𝑥)) |𝑢 − 𝑃 |𝑡1
𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽𝑡1
≲

|𝑢 |𝑝
𝑊 𝑠̃ ,𝑝(𝐵𝑟(𝑥))

𝑟𝛿𝑝
|𝑢 |𝑡1−𝑝

𝑊 𝑠,𝑝(𝛺), (4.3)

where we recall that 𝛿 = 𝛽 − 𝛽̃ = 𝑠 − 𝑠̃ > 0. Therefore,

𝐼 ≲ |𝑢 |(𝑡1−𝑝)/𝑡1
𝑊 𝑠,𝑝(𝛺)

(∫
𝛺

(∫
𝑈𝑥

∫
ℝ𝑁

∫
(𝐵𝑟(𝑥))ℎ

|Δ𝑚
ℎ
𝑢(𝑧)|𝑝

|ℎ |𝑁+̃𝑠𝑝 d𝑧 dℎ 1
𝑟𝛿𝑝+𝑁𝑡1/𝑡2+1

d𝑟
) 𝑡2/𝑡1

d𝑥
)1/𝑡2

. (4.4)

We let 𝐹 be the set of all (𝑥, 𝑟, ℎ, 𝑧) ∈ 𝛺 × (0,∞) × ℝ𝑁 × 𝛺 such that 𝐵𝑟(𝑥) ⊂ 𝛺 and
𝑧 ∈ (𝐵𝑟(𝑥))ℎ , and we define

𝑓 (𝑥, 𝑟, ℎ, 𝑧) ≔
|Δ𝑚

ℎ
𝑢(𝑧)|𝑝

|ℎ |𝑁+̃𝑠𝑝 𝜒𝐹(𝑥, 𝑟, ℎ, 𝑧),

so that (4.4) rewrites as

𝐼𝑡1 ≲ |𝑢 |𝑡1−𝑝
𝑊 𝑠,𝑝(𝛺)

(∫
𝛺

(∫
(0,∞)×ℝ𝑁×𝛺

𝑓 d𝑧 dℎ 1
𝑟𝛿𝑝+𝑁𝑡1/𝑡2+1

d𝑟
) 𝑡2/𝑡1

d𝑥
) 𝑡1/𝑡2

.
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Since 𝑡2 ≥ 𝑡1, we may invoke the Minkowski integral inequality to deduce that

𝐼𝑡1 ≲ |𝑢 |𝑡1−𝑝
𝑊 𝑠,𝑝(𝛺)

∫
(0,∞)×ℝ𝑁×𝛺

(∫
𝛺
𝑓 𝑡2/𝑡1 d𝑥

) 𝑡1/𝑡2
d𝑧 dℎ 1

𝑟𝛿𝑝+𝑁𝑡1/𝑡2+1
d𝑟

≲ |𝑢 |𝑡1−𝑝
𝑊 𝑠,𝑝(𝛺)

∫
ℝ𝑁

∫
𝛺ℎ

∫ ∞

|ℎ |/2

(∫
𝐵𝑟(𝑧)

|Δ𝑚
ℎ
𝑢(𝑧)|𝑡2𝑝/𝑡1

|ℎ |𝑡2(𝑁+̃𝑠𝑝)/𝑡1
d𝑥

) 𝑡1/𝑡2 1
𝑟𝛿𝑝+𝑁𝑡1/𝑡2+1

d𝑟 d𝑧 dℎ

≲ |𝑢 |𝑡1−𝑝
𝑊 𝑠,𝑝(𝛺)

∫
ℝ𝑁

∫
𝛺ℎ

|Δ𝑚
ℎ
𝑢(𝑧)|𝑝

|ℎ |𝑁+̃𝑠𝑝

∫ ∞

|ℎ |/2

𝑟𝑁𝑡1/𝑡2

𝑟𝑁𝑡1/𝑡2+1+𝛿𝑝 d𝑟 d𝑧 dℎ

≲ |𝑢 |𝑡1−𝑝
𝑊 𝑠,𝑝(𝛺)

∫
ℝ𝑁

∫
𝛺ℎ

|Δ𝑚
ℎ
𝑢(𝑧)|𝑝

|ℎ |𝑁+𝑠𝑝 d𝑧 dℎ ≲ |𝑢 |𝑡1
𝑊 𝑠,𝑝(𝛺).

This concludes the proof when 𝑡2 < ∞.
(2) Using (4.3) and arguing as above, we find that

𝐼𝑡1 ≲ |𝑢 |𝑡1−𝑝
𝑊 𝑠,𝑝(𝛺)

∫
𝑈𝑥

|𝑢 |𝑝
𝑊 𝑠̃ ,𝑝(𝐵𝑟(𝑥))

𝑟𝛿𝑝
1
𝑟

d𝑟

≲ |𝑢 |𝑡1−𝑝
𝑊 𝑠,𝑝(𝛺)

∫
ℝ𝑁

∫
𝛺ℎ

|Δ𝑚
ℎ
𝑢(𝑧)|𝑝

|ℎ |𝑁+̃𝑠𝑝

∫ ∞

|ℎ |/2

1
𝑟𝛿𝑝+1 d𝑟 d𝑧 dℎ

≲ |𝑢 |𝑡1−𝑝
𝑊 𝑠,𝑝(𝛺)

∫
ℝ𝑁

∫
𝛺ℎ

|Δ𝑚
ℎ
𝑢(𝑧)|𝑝

|ℎ |𝑁+𝑠𝑝 d𝑧 dℎ = |𝑢 |𝑡1
𝑊 𝑠,𝑝(𝛺). □

We now state our result for integer order regularity. The case 𝑡1 = 𝑡2 being already
contained in Propositions 3.3 and 3.5, we focus on the case 𝑝 ≤ 𝑡1 < 𝑡2. As in Section 3, we rely
on two different approaches: one based on a weak-type estimate along with interpolation,
that requires no smoothness on 𝛺 but fails if 𝑝 = 1, and another one, based on Sobolev
embeddings, that requires some regularity on 𝛺 but carries on to 𝑝 = 1 if𝑁 ≥ 2. Afterwards,
we will show that there is no estimate when 𝑁 = 1 and 𝑝 = 1.

We start with the first approach, valid when 𝑝 > 1 and 𝑡2 < ∞.

Proposition 4.3. Assume that 𝑠 is an integer and 𝑝 > 1.

(1) Let 𝑝 ≤ 𝑡1 < 𝑡2 < ∞. Then there exists a finite constant 𝐶 = 𝐶(𝛼, 𝑠 , 𝑝, 𝑞, 𝑁, 𝑡1, 𝑡2) such that(∫
𝛺

(∫
𝑈𝑥

inf𝑃∈𝒫ℓ (𝐵𝑟(𝑥)) |𝑢 − 𝑃 |𝑡1
𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽𝑡1

1
𝑟𝑁𝑡1/𝑡2+1

d𝑟
) 𝑡2/𝑡1

d𝑥
)1/𝑡2

≤ 𝐶 |𝑢 |𝑊 𝑠,𝑝(𝛺). (4.5)

(2) Let 𝑝 ≤ 𝑡1 < ∞. Then there exists a finite constant 𝐶 = 𝐶(𝛼, 𝑠 , 𝑝, 𝑞, 𝑁, 𝑡1) such that(∫
𝑈𝑥

inf𝑃∈𝒫ℓ (𝐵𝑟(𝑥)) |𝑢 − 𝑃 |𝑡1
𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽𝑡1

1
𝑟

d𝑟
)1/𝑡1

≤ 𝐶 |𝑢 |𝑊 𝑠,𝑝(𝛺), ∀ 𝑥 ∈ 𝛺. (4.6)

Proof. (1) Let 𝐸𝑢,𝜆, respectively 𝐸𝑢,𝜆,𝑥 , be as in (3.5), respectively (3.10). Set 𝜈 ≔
1

𝑟𝑁𝑡1/𝑡2+1
d𝑟.

On the one hand, thanks to the Sobolev inequality (1.4), we have, with 𝐶 the constant in (1.4),
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𝐸𝑢,𝜆,𝑥 = ∅ for 𝜆 ≥ 𝐶 |𝑢 |𝑊 𝑠,𝑝(𝛺). (4.7)

On the other hand, arguing exactly as in the proof of (3.11), we find that, for 1 ≤ 𝑝̃ < 𝑝

sufficiently close to 𝑝, we have

𝜈(𝐸𝑢,𝜆,𝑥) ≲
1

𝜆𝑝𝑡1/𝑡2
[ℳ(|𝐷𝑠𝑢 | 𝑝̃)(𝑥)](𝑝𝑡1)/(𝑝̃𝑡2), ∀ 𝑥 ∈ 𝛺. (4.8)

Combining (4.7) and (4.8), we find that∫
𝑈𝑥

inf𝑃∈𝒫ℓ (𝐵𝑟(𝑥)) |𝑢 − 𝑃 |𝑡1
𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽𝑡1

1
𝑟𝑁𝑡1/𝑡2+1

d𝑟 = 𝑡1
∫ ∞

0
𝜆𝑡1−1𝜈(𝐸𝑢,𝜆,𝑥)d𝜆

≲

∫ 𝐶 |𝑢 |𝑊𝑠,𝑝 (𝛺)

0
𝜆𝑡1−1−𝑝𝑡1/𝑡2

(
ℳ(|𝐷𝑠𝑢 | 𝑝̃)(𝑥)

) (𝑝𝑡1)/(𝑝̃𝑡2)
d𝜆

≲ |𝑢 |𝑡1−𝑝𝑡1/𝑡2
𝑊 𝑠,𝑝(𝛺)

(
ℳ(|𝐷𝑠𝑢 | 𝑝̃)(𝑥)

) (𝑝𝑡1)/(𝑝̃𝑡2)
,

where the last inequality relies on the fact that 𝑡1 − 1 − 𝑝𝑡1/𝑡2 > −1 (since 𝑡2 > 𝑡1 ≥ 𝑝).
This implies that

𝐼𝑡2 ≲ |𝑢 |𝑡2−𝑝
𝑊 𝑠,𝑝(𝛺)

∫
𝛺

(
ℳ(|𝐷𝑠𝑢 | 𝑝̃)(𝑥)

)𝑝/𝑝̃
≲ |𝑢 |𝑡2−𝑝

𝑊 𝑠,𝑝(𝛺) |𝑢 |
𝑝

𝑊 𝑠,𝑝(𝛺),

owing to the maximal function theorem. This yields (4.5).
(2) We start with the case where 𝑝 < 𝑡1. When 𝛺 ≠ ℝ𝑁 , we argue as follows. Let 𝑅 ≔

dist(𝑥,𝛺𝑐) < ∞, so that 𝛺𝑥 = (0, 𝑅). Set 𝜔 ≔ 𝐵𝑅(𝑥). Let 𝑠̃ and 𝑝̃ be such that

max(𝑠 − 1, 𝛼) < 𝑠̃ < 𝑠, 𝑠̃ − 𝑁

𝑝̃
= 𝑠 − 𝑁

𝑝
. (4.9)

Using (4.9), (4.2), and the embedding 𝑊 𝑠,𝑝(𝜔) ↩→ 𝑊 𝑠̃ ,𝑝̃(𝜔), we find that, with 𝐶′ inde-
pendent of 𝑅 (by scaling),(∫

𝑈𝑥

inf𝑃∈𝒫ℓ (𝐵𝑟(𝑥)) |𝑢 − 𝑃 |𝑡1
𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽𝑡1

1
𝑟

d𝑟
)1/𝑡1

≤ 𝐶 |𝑢 |𝑊 𝑠̃ ,𝑝̃(𝜔) ≤ 𝐶′|𝑢 |𝑊 𝑠,𝑝(𝜔)

≤ 𝐶′|𝑢 |𝑊 𝑠,𝑝(𝛺), ∀ 𝑥 ∈ 𝛺.
(4.10)

Next, assume that 𝑝 < 𝑡1 and 𝛺 = ℝ𝑁 . Then 𝜔 = ℝ𝑁 and (4.10) still holds in this context.
(For the analogue of (1.4) in the full space, see, e.g., [2, Appendix B].) Alternatively, one could
start from (4.10) with 𝛺 = 𝐵𝑅(𝑥), then let 𝑅 → ∞.

Finally, we consider the case where 𝑝 = 𝑡1. In this case, we will rely on a variant of (3.8).
More specifically, let, for 𝑟 ∈ 𝑈𝑥 ,

𝐴𝑟 ≔ {𝑦 ∈ ℝ𝑁 : 𝑟/2 < |𝑦 − 𝑥 | < 𝑟} ⊂ 𝛺.
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With 𝑝̃ satisfying (3.7), we have, by the proof of (3.8),

inf
𝑃∈𝒫ℓ

|𝑢 − 𝑃 |𝑊𝛼,𝑞(𝐵𝑟(𝑥)) ≲ 𝑟
𝛽̃ |𝑢 |𝑊 𝑠,𝑝̃(𝐵𝑟(𝑥)) ≲ 𝑟

𝛽̃+𝑁/𝑝̃[ℳ(|𝐷𝑠𝑢 | 𝑝̃)(𝑦)]1/𝑝̃ , ∀ 𝑦 ∈ 𝐴𝑟 , (4.11)

where we have extended 𝐷𝑠𝑢 with the value 0 outside 𝛺.
Taking the average of (4.11) in 𝑦, integrating the result in 𝑟, applying the Jensen inequality,

and using (3.7) and the maximal function theorem, we find that∫
𝑈𝑥

inf𝑃∈𝒫ℓ (𝐵𝑟(𝑥)) |𝑢 − 𝑃 |𝑝
𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽𝑝
1
𝑟

d𝑟

≲

∫
𝑈𝑥

(⨏
𝐴𝑟

[ℳ(|𝐷𝑠𝑢 | 𝑝̃)(𝑦)]1/𝑝̃ d𝑦
)𝑝
𝑟𝑁

1
𝑟

d𝑟

≲

∫
𝑈𝑥

∫
𝐴𝑟

[ℳ(|𝐷𝑠𝑢 | 𝑝̃)(𝑦)]𝑝/𝑝̃ d𝑦 1
𝑟

d𝑟

≤
∫
𝛺
[ℳ(|𝐷𝑠𝑢 | 𝑝̃)(𝑦)]𝑝/𝑝̃

∫ 2|𝑦−𝑥 |

|𝑦−𝑥 |

1
𝑟

d𝑟 d𝑦 ≲ |𝑢 |𝑝
𝑊 𝑠,𝑝(𝛺),

whence (4.6) with 𝑡1 = 𝑝. □

We next turn to the limiting case where 𝑝 = 1 and 𝑁 ≥ 2, that we are able to treat under
an extra regularity assumption on 𝛺.

Proposition 4.4. Let 𝛺 be a bounded Lipschitz domain. Assume that 𝑠 is an integer and 𝑁 ≥ 2.

(1) Let 1 < 𝑡1 < 𝑡2 ≤ ∞. Then there exists a finite constant 𝐶 = 𝐶(𝛼, 𝑠 , 𝑞,𝛺, 𝑡1, 𝑡2) such that(∫
𝛺

(∫
𝑈𝑥

inf𝑃∈𝒫ℓ (𝐵𝑟(𝑥)) |𝑢 − 𝑃 |𝑡1
𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽𝑡1

1
𝑟𝑁𝑡1/𝑡2+1

d𝑟
) 𝑡2/𝑡1

d𝑥
)1/𝑡2

≤ 𝐶 |𝑢 |𝑊 𝑠,1(𝛺). (4.12)

(2) Let 1 < 𝑡1 < ∞. Then there exists a finite constant 𝐶 = 𝐶(𝛼, 𝑠 , 𝑞,𝛺, 𝑡1) such that(∫
𝑈𝑥

inf𝑃∈𝒫ℓ (𝐵𝑟(𝑥)) |𝑢 − 𝑃 |𝑡1
𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽𝑡1

1
𝑟

d𝑟
)1/𝑡1

≤ 𝐶 |𝑢 |𝑊 𝑠,1(𝛺), ∀ 𝑥 ∈ 𝛺. (4.13)

Proof. (1) We follow the proof of Proposition 3.6. It suffices to establish the conclusion when
1 < 𝑡1 < 𝑡2, with 𝑡1 sufficiently close to 1. For such 𝑡1, defining 𝑠 via (3.14) and using estimate
(4.1), we obtain(∫

𝛺

(∫
𝑈𝑥

inf𝑃∈𝒫ℓ (𝐵𝑟(𝑥)) |𝑢 − 𝑃 |𝑡1
𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽𝑡1

1
𝑟𝑁𝑡1/𝑡2+1

d𝑟
) 𝑡2/𝑡1

d𝑥
)1/𝑡2

≤ 𝐶 |𝑢 |𝑊 𝑠̃ ,𝑡1 (𝛺). (4.14)

We conclude by combining (4.14) with the Sobolev inequality (3.16).
(2) The argument is essentially the same: we use (4.2) instead of (4.1). □

We call the attention of the reader to the great similarity between this section and the
two previous ones. Indeed, both when working with one or two parameters, the approach
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is essentially the same: when 𝑠 > 0 is not an integer, the core of the proof is an suitable use
of either Tonelli’s theorem or Minkowski’s integral inequality, while the case where 𝑠 is an
integer relies on an interpolation of weak-type estimates, or on Solonnikov’s inequality to
obtain the limiting case 𝑝 = 1 by appealing to the case where 𝑠 is not an integer.

The latter argument breaks down when 𝑁 = 1. As in Section 3, we are able to show that
there is actually no estimate in this case; see Corollary 4.6 below.

Lemma 4.5. Let 𝑁 = 1, 𝑠 ≥ 1 be an integer, 𝑝 = 1, and 𝛺 = (−1, 1). Let 𝑢 be as in Lemma 3.10.

(1) If 1 ≤ 𝑡1 ≤ 𝑡2 < ∞, then(∫
𝛺

(∫
𝑈𝑥

inf𝑃∈𝒫ℓ (𝐵𝑟(𝑥)) |𝑢 − 𝑃 |𝑡1
𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽𝑡1

1
𝑟𝑡1/𝑡2+1

d𝑟
) 𝑡2/𝑡1

d𝑥
)1/𝑡2

= ∞. (4.15)

(2) If 1 ≤ 𝑡1 < ∞, then(∫
𝑈0

inf𝑃∈𝒫ℓ (𝐵𝑟(0)) |𝑢 − 𝑃 |𝑡1
𝑊𝛼,𝑞(𝐵𝑟(0))

𝑟𝛽𝑡1

1
𝑟

d𝑟
)1/𝑡1

= ∞. (4.16)

Proof. Items (1) and (2) are straightforward consequences of (3.17). □

Corollary 4.6. Let 𝑁 = 1, 𝑠 ≥ 1 be an integer, and 𝑝 = 1.

(1) If 1 ≤ 𝑡1 < ∞, then there exists some 𝑢 ∈𝑊 𝑠,1(𝛺) such that(∫
𝛺

(∫
𝑈𝑥

inf𝑃∈𝒫ℓ (𝐵𝑟(𝑥)) |𝑢 − 𝑃 |𝑡1
𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽𝑡1

1
𝑟𝑡1/𝑡2+1

d𝑟
) 𝑡2/𝑡1

d𝑥
)1/𝑡2

= ∞. (4.17)

(2) If 1 ≤ 𝑡1 < ∞, then there exists some 𝑢 ∈𝑊 𝑠,1(𝛺) such that

sup
𝑥∈𝛺

(∫
𝑈𝑥

inf𝑃∈𝒫ℓ (𝐵𝑟(0)) |𝑢 − 𝑃 |𝑡1
𝑊𝛼,𝑞(𝐵𝑟(0))

𝑟𝛽𝑡1

1
𝑟

d𝑟
)1/𝑡1

= ∞. (4.18)

Sketch of proof of Corollary 4.6. (1) As explained in the proof of Corollary 3.11, (4.15) implies
that there exist mutually disjoint intervals 𝐼𝑘 ⊂ 𝛺 and maps 𝑢𝑘 ∈ 𝐶∞

c (𝐼𝑘) such that ∥𝑢(𝑠)
𝑘
∥𝐿1 ≤

2−𝑘 and(∫
𝐼𝑘

(∫
(𝑈𝑘)𝑥

inf𝑃∈𝒫ℓ (𝐵𝑟(𝑥)) |𝑢 − 𝑃 |𝑡1
𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽𝑡1

1
𝑟𝑡1/𝑡2+1

d𝑟
) 𝑡2/𝑡1

d𝑥
)1/𝑡2

→ ∞, (4.19)

where𝑈𝑘 is the set𝑈 adapted to 𝐼𝑘 . We may then let 𝑢 ≔
∑
𝑘 𝑢𝑘 .

(2) We perform a similar construction, starting this time from (4.18). Instead of (4.19), we
require the existence of 𝑥𝑘 ∈ 𝐼𝑘 such that(∫

(𝑈𝑘)𝑥𝑘

inf𝑃∈𝒫ℓ (𝐵𝑟(𝑥𝑘)) |𝑢 − 𝑃 |𝑡1
𝑊𝛼,𝑞(𝐵𝑟(𝑥𝑘))

𝑟𝛽𝑡1

1
𝑟

d𝑟
)1/𝑡1

→ ∞. □
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Case 2. 𝑡1 ≥ 𝑡2. Recall that, in this case, the relevant section is𝑈 𝑟 ≔ {𝑥 ∈ 𝛺: 𝐵𝑟(𝑥) ⊂ 𝛺}. We
start again with the fractional regularity case.

Proposition 4.7. Assume that 𝑠 > 0 is not an integer.

(1) Let 𝑝 ≤ 𝑡2 ≤ 𝑡1 < ∞. Then there exists a finite constant 𝐶 = 𝐶(𝛼, 𝑠 , 𝑝, 𝑞, 𝑁, 𝑡1, 𝑡2) such that(∫ ∞

0

(∫
𝑈 𝑟

inf𝑃∈𝒫ℓ (𝐵𝑟(𝑥)) |𝑢 − 𝑃 |𝑡2
𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽𝑡2
d𝑥

) 𝑡1/𝑡2 1
𝑟𝑁𝑡1/𝑡2+1

d𝑟
)1/𝑡1

≤ 𝐶 |𝑢 |𝑊 𝑠,𝑝(𝛺). (4.20)

(2) Let 𝑝 ≤ 𝑡2 < ∞. Then there exists a finite constant 𝐶 = 𝐶(𝛼, 𝑠 , 𝑝, 𝑞, 𝑁) such that(∫
𝑈 𝑟

inf
𝑃∈𝒫ℓ (𝐵𝑟(𝑥))

|𝑢 − 𝑃 |𝑡2
𝑊𝛼,𝑞(𝐵𝑟(𝑥)) d𝑥

)1/𝑡2
≤ 𝐶𝑟𝛽+𝑁/𝑡2 |𝑢 |𝑊 𝑠,𝑝(𝛺), ∀ 𝑟 > 0. (4.21)

Proof. (1) The proof is very similar to the one of Proposition 4.1 (1). We let 𝑠̃ and 𝛿 be as
there. Using: (i) (4.3) (with 𝑡2 in place of 𝑡1); (ii) 𝑧 ∈ (𝐵𝑟(𝑥))ℎ ⇒ 𝑥 ∈ 𝐵𝑟(𝑧); (iii) 𝑧 ∈ (𝐵𝑟(𝑥))ℎ ≠
∅ ⇒ |ℎ | < 2𝑟 (see the proof of (2.7)), we find that

𝐼𝑡1 ≲ |𝑢 |𝑡1(𝑡2−𝑝)/𝑡2
𝑊 𝑠,𝑝(𝛺)

∫ ∞

0

(∫
𝑈 𝑟

∫
ℝ𝑁

∫
(𝐵𝑟(𝑥))ℎ

|Δ𝑚
ℎ
𝑢(𝑧)|𝑝

|ℎ |𝑁+̃𝑠𝑝 d𝑧 dℎ d𝑥
) 𝑡1/𝑡2 1

𝑟𝑡1𝛿𝑝/𝑡2+𝑁𝑡1/𝑡2+1
d𝑟

≲ |𝑢 |𝑡1(𝑡2−𝑝)/𝑡2
𝑊 𝑠,𝑝(𝛺)

∫ ∞

0

(∫
𝐵2𝑟(0)

∫
𝛺ℎ

|Δ𝑚
ℎ
𝑢(𝑧)|𝑝

|ℎ |𝑁+̃𝑠𝑝 d𝑧 dℎ
) 𝑡1/𝑡2 1

𝑟𝑡1𝛿𝑝/𝑡2+1
d𝑟.

We now invoke the Minkowski inequality, as in the proof of Proposition 4.1, to find

𝐼𝑡2 ≲ |𝑢 |𝑡2−𝑝
𝑊 𝑠,𝑝(𝛺)

∫
ℝ𝑁

∫
𝛺ℎ

|Δ𝑚
ℎ
𝑢(𝑧)|𝑝

|ℎ |𝑁+̃𝑠𝑝 d𝑧 dℎ
(∫ ∞

|ℎ |/2

1
𝑟𝛿𝑡1𝑝/𝑡2+1

d𝑟
) 𝑡2/𝑡1

d𝑧 dℎ

≲ |𝑢 |𝑡2−𝑝
𝑊 𝑠,𝑝(𝛺)

∫
ℝ𝑁

∫
𝛺ℎ

|Δ𝑚
ℎ
𝑢(𝑧)|𝑝

|ℎ |𝑁+̃𝑠𝑝+𝛿𝑝 d𝑧 dℎ = |𝑢 |𝑡2
𝑊 𝑠,𝑝(𝛺),

concluding the proof of item (1).
(2) The case where 𝑡2 = 𝑝 is obtained by integrating (1.4) in 𝑥 ∈ 𝑈 𝑟 and using property (ii) in
the proof of item (1). The case where 𝑝 < 𝑡2 < ∞ follows from (1.4), the case where 𝑡2 = 𝑝,
and the Hölder inequality. □

In the case where 𝑠 is an integer, we do not know whether or not it is possible to obtain the
counterpart of Proposition 4.7 via interpolation of a weak-type estimate, even when 𝑝 > 1,
due to the reversed order of integration. However, it is still possible to obtain the desired
estimate by relying on Sobolev embeddings, assuming some extra regularity on the domain,
and that 𝑁 ≥ 2 in the limiting case where 𝑝 = 1, but only when 𝑡1 < ∞. Indeed, in this
particular case, the estimate when 𝑡1 = ∞ holds without any extra assumption on 𝛺, 𝑝, or 𝑁 .

Proposition 4.8. Assume that 𝑠 is an integer.

15



(1) Let 𝛺 be a Lipschitz bounded domain, 𝑝 < 𝑡2 < 𝑡1 < ∞, and assume: either (i) 𝑝 > 1, or (ii)
𝑝 = 1 and 𝑁 ≥ 2. Then there exists a finite constant 𝐶 = 𝐶(𝛼, 𝑠 , 𝑞,𝛺, 𝑡1, 𝑡2) such that(∫ ∞

0

(∫
𝑈 𝑟

inf𝑃∈𝒫ℓ (𝐵𝑟(𝑥)) |𝑢 − 𝑃 |𝑡2
𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽𝑡2
d𝑥

) 𝑡1/𝑡2 1
𝑟𝑁𝑡1/𝑡2+1

d𝑟
)1/𝑡1

≤ 𝐶 |𝑢 |𝑊 𝑠,𝑝(𝛺). (4.22)

(2) Let 𝑝 ≤ 𝑡2 < ∞. Then there exists a finite constant 𝐶 = 𝐶(𝛼, 𝑠 , 𝑝, 𝑞, 𝑁) such that(∫
𝑈 𝑟

inf
𝑃∈𝒫ℓ (𝐵𝑟(𝑥))

|𝑢 − 𝑃 |𝑡2
𝑊𝛼,𝑞(𝐵𝑟(𝑥)) d𝑥

)1/𝑡2
≤ 𝐶𝑟𝛽+𝑁/𝑡2 |𝑢 |𝑊 𝑠,𝑝(𝛺), ∀ 𝑟 > 0. (4.23)

Proof. (1) The proof is the same as the proof of Propositions 3.6 and 4.4 (1), and we therefore
omit the details. The key idea is to rely on the Sobolev embedding 𝑊 𝑠,𝑝 ↩→ 𝑊 𝑠̃ ,𝑡 , where
𝑝 < 𝑡 < 𝑡2 is chosen sufficiently close to 𝑝 and satisfying

𝑠̃ − 𝑁

𝑡
= 𝑠 − 𝑁

𝑝
.

Such a Sobolev inequality always holds on bounded Lipschitz domains – and in particular
on balls (see, e.g., [1, Theorem B] and the references therein) – except in the case where 𝑁 = 1
and 𝑝 = 1 that we already mentioned. We then conclude by the means of Proposition 4.7 (1).
(2) We repeat the proof of (4.21). We observe that here, the assumption that either (i)
𝑝 > 1, or (ii) 𝑝 = 1 and 𝑁 ≥ 2, is not required, as we only rely on the suboptimal Sobolev
embedding (1.4), which is always valid. □

To conclude, we state the by now familiar non-inequality in the limiting case where𝑁 = 1,
𝑠 ≥ 1 integer, and 𝑝 = 1.

Lemma 4.9. Let 𝑁 = 1, 𝑠 ≥ 1 be an integer, 𝑝 = 1, 𝛺 = (−1, 1), and 1 ≤ 𝑡2 ≤ 𝑡1 < ∞. Let 𝑢 be as
in Lemma 3.10. Then(∫ ∞

0

(∫
𝑈 𝑟

inf𝑃∈𝒫ℓ (𝐵𝑟(𝑥)) |𝑢 − 𝑃 |𝑡2
𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽𝑡2
d𝑥

) 𝑡1/𝑡2 1
𝑟𝑡1/𝑡2+1

d𝑟
)1/𝑡1

= ∞. (4.24)

Corollary 4.10. Let 𝑁 = 1, 𝑠 ≥ 1 be an integer, 𝑝 = 1, and 1 ≤ 𝑡2 ≤ 𝑡1 < ∞. Then there exists some
𝑢 ∈𝑊 𝑠,1(𝛺) such that(∫ ∞

0

(∫
𝑈 𝑟

inf𝑃∈𝒫ℓ (𝐵𝑟(𝑥)) |𝑢 − 𝑃 |𝑡2
𝑊𝛼,𝑞(𝐵𝑟(𝑥))

𝑟𝛽𝑡2
d𝑥

) 𝑡1/𝑡2 1
𝑟𝑡1/𝑡2+1

d𝑟
)1/𝑡1

= ∞. (4.25)

The proofs of Lemma 4.9 and Corollary 4.10, are essentially the same as the ones of
Lemma 4.5 and Corollary 4.6, and are omitted.

We end by collecting here the limiting cases that are not covered by our analysis of the
case where 𝑡1 ≥ 𝑡2.

Question 4.11. (1) Is there a counterpart to Propositions 4.4 and 4.8 for an arbitrary domain?
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(2) What happens with Propositions 4.4 (1) and 4.8 (1) in the limiting case 𝑡1 = 1, respectively
𝑡2 = 𝑝?
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