A complete answer to the strong density problem for Sobolev spaces with values into manifolds

Antoine Detaille

The 28th of February

Strong density problem in $W^{s,p}(\Omega; \mathcal{N})$

Sobolev spaces with values into manifolds

Let N be a smooth Riemannian manifold, compact, connected, without boundary, isometrically embedded in \mathbb{R}^{ν} .

Let $\Omega \subset \mathbb{R}^m$ be a smooth bounded open set, $1 \leq p < +\infty$, $0 < s < +\infty$.

Definition

 $W^{s,p}(\Omega; \mathcal{N}) = \{ u \in W^{s,p}(\Omega; \mathbb{R}^{\nu}) : u(x) \in \mathcal{N} \text{ for almost every } x \in \Omega \}$

Reminder : classical Sobolev spaces

Let $s = k + \sigma$ with $k \in \mathbb{N}$ and $\sigma \in [0, 1)$.

$$W^{k,p}(\Omega) = \{ u \in L^p(\Omega) : D^j u \in L^p(\Omega) \text{ for every } j \in \{1, \dots, k\} \}$$

If $\sigma \in (0, 1)$,
$$W^{\sigma,p}(\Omega) = \left\{ u \in L^p(\Omega) : \int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^p}{|x - y|^{m + \sigma p}} \, dx \, dy < +\infty \right\}.$$

If $k \geq 1$,

$$W^{s,p}(\Omega) = \{ u \in W^{k,p}(\Omega) : D^k u \in W^{\sigma,p}(\Omega) \}.$$

3

伺 ト イヨ ト イヨ ト

The strong density problem

Theorem

 $\mathcal{C}^{\infty}(\overline{\Omega})$ is dense in $W^{s,p}(\Omega)$

Question

Is $\mathcal{C}^{\infty}(\Omega; \mathcal{N})$ dense in $W^{s,p}(\Omega; \mathcal{N})$?

同 トイヨト イヨト 三日

The strong density problem

Theorem

 $\mathcal{C}^{\infty}(\overline{\Omega})$ is dense in $W^{s,p}(\Omega)$

Question

Is $C^{\infty}(\overline{\Omega}; \mathcal{N})$ dense in $W^{s,p}(\Omega; \mathcal{N})$?

A B > A B >

- Th

A topological obstruction

For $1 \le p < 2$, the map $u \in W^{1,p}(\mathbb{B}^2; \mathbb{S}^1)$ defined by

$$u(x) = \frac{x}{|x|}$$

cannot be approached by maps in $C^{\infty}(\overline{\mathbb{B}}^2; \mathbb{S}^1)$.

Theorem (Schoen-Uhlenbeck (1983), Bethuel-Zheng (1988), Escobedo (1988))

Assume that sp < m. If $C^{\infty}(\overline{\Omega}; \mathcal{N})$ is dense in $W^{s,p}(\Omega; \mathcal{N})$, then $\pi_{[sp]}(\mathcal{N}) = \{0\}.$

イロト イポト イヨト イヨト 二日

A topological obstruction

For $1 \le p < 2$, the map $u \in W^{1,p}(\mathbb{B}^2; \mathbb{S}^1)$ defined by

$$u(x) = \frac{x}{|x|}$$

cannot be approached by maps in $C^{\infty}(\overline{\mathbb{B}}^2; \mathbb{S}^1)$.

Theorem (Schoen-Uhlenbeck (1983), Bethuel-Zheng (1988), Escobedo (1988))

Assume that sp < m. If $C^{\infty}(\overline{\Omega}; \mathcal{N})$ is dense in $W^{s,p}(\Omega; \mathcal{N})$, then $\pi_{[sp]}(\mathcal{N}) = \{0\}.$

(4月) (4日) (4日) 日

Proposition (Schoen-Uhlenbeck (1983), Brezis-Nirenberg (1995)) If $sp \ge m$, then $C^{\infty}(\overline{\Omega}; \mathcal{N})$ is dense in $W^{s,p}(\Omega; \mathcal{N})$.

There exists $\iota > 0$ such that the *nearest point projection* $\Pi : \mathcal{N} + B_{\iota}^{\nu} \to \mathcal{N}$ is well-defined and smooth.

伺 とく ヨ とく ヨ とう ヨ

Proposition (Schoen-Uhlenbeck (1983), Brezis-Nirenberg (1995)) If $sp \ge m$, then $C^{\infty}(\overline{\Omega}; \mathcal{N})$ is dense in $W^{s,p}(\Omega; \mathcal{N})$.

There exists $\iota > 0$ such that the *nearest point projection* $\Pi : \mathcal{N} + B_{\iota}^{\nu} \to \mathcal{N}$ is well-defined and smooth.

周レスヨレスヨレーヨ

Question

Is $C^{\infty}(\overline{\Omega}; \mathcal{N})$ dense in $W^{s,p}(\Omega; \mathcal{N})$ when $\pi_{[sp]}(\mathcal{N}) = \{0\}$?

Yes (when $\Omega = Q^m$) if

- *s* = 1 (Bethuel (1991));
- $s \in \mathbb{N}_*$ (Bousquet-Ponce-Van Schaftingen (2015));
- 0 < *s* < 1 (Brezis-Mironescu (2015)).

Remaining case : $s > 1, s \notin \mathbb{N}_*$.

何トイヨトイヨト・ヨ

Question

Is $C^{\infty}(\overline{\Omega}; \mathcal{N})$ dense in $W^{s,p}(\Omega; \mathcal{N})$ when $\pi_{[sp]}(\mathcal{N}) = \{0\}$?

Yes (when $\Omega = Q^m$) if

- *s* = 1 (Bethuel (1991));
- $s \in \mathbb{N}_*$ (Bousquet-Ponce-Van Schaftingen (2015));
- 0 < *s* < 1 (Brezis-Mironescu (2015)).

Remaining case : s > 1, $s \notin \mathbb{N}_*$.

何トイヨトイヨト・ヨ

Question

Is $C^{\infty}(\overline{\Omega}; \mathcal{N})$ dense in $W^{s,p}(\Omega; \mathcal{N})$ when $\pi_{[sp]}(\mathcal{N}) = \{0\}$?

Yes (when $\Omega = Q^m$) if

- *s* = 1 (Bethuel (1991));
- $s \in \mathbb{N}_*$ (Bousquet-Ponce-Van Schaftingen (2015));
- 0 < *s* < 1 (Brezis-Mironescu (2015)).

Remaining case : $s > 1, s \notin \mathbb{N}_*$.

何トイヨトイヨト・ヨ

Question

Is $C^{\infty}(\overline{\Omega}; \mathcal{N})$ dense in $W^{s,p}(\Omega; \mathcal{N})$ when $\pi_{[sp]}(\mathcal{N}) = \{0\}$?

Yes (when $\Omega = Q^m$) if

- *s* = 1 (Bethuel (1991));
- $s \in \mathbb{N}_*$ (Bousquet-Ponce-Van Schaftingen (2015));
- 0 < *s* < 1 (Brezis-Mironescu (2015)).

Remaining case : s > 1, $s \notin \mathbb{N}_*$.

伺い イヨン イヨン 三日

Question

Is $C^{\infty}(\overline{\Omega}; \mathcal{N})$ dense in $W^{s,p}(\Omega; \mathcal{N})$ when $\pi_{[sp]}(\mathcal{N}) = \{0\}$?

Yes (when $\Omega = Q^m$) if

- *s* = 1 (Bethuel (1991));
- $s \in \mathbb{N}_*$ (Bousquet-Ponce-Van Schaftingen (2015));
- 0 < *s* < 1 (Brezis-Mironescu (2015)).

Remaining case : $s > 1, s \notin \mathbb{N}_*$.

周 ト イヨ ト イヨ ト 二 ヨ

A complete answer to the density problem

Theorem

For every $1 \le p < +\infty$ and $0 < s < +\infty$ such that sp < m, $C^{\infty}(\overline{Q}^m; \mathcal{N})$ is dense in $W^{s,p}(Q^m; \mathcal{N})$ if and only if $\pi_{[sp]}(\mathcal{N}) = \{0\}$.

A unified proof of this result for the whole range $0 < s < +\infty$ via the method of good and bad cubes.

伺 と く ヨ と く ヨ と

A complete answer to the density problem

Theorem

For every $1 \le p < +\infty$ and $0 < s < +\infty$ such that sp < m, $C^{\infty}(\overline{Q}^m; \mathcal{N})$ is dense in $W^{s,p}(Q^m; \mathcal{N})$ if and only if $\pi_{[sp]}(\mathcal{N}) = \{0\}$.

A unified proof of this result for the whole range $0 < s < +\infty$ via the method of good and bad cubes.

伺 とう ヨ とう きょう しょう

Good and bad cubes

Good cubes are all cubes such that

$$\frac{1}{\eta^{\frac{m}{sp}-1}}\|Du\|_{L^{sp}(\sigma^m)}\leq c\iota.$$

Other cubes are called bad cubes.

Let $\ell = [sp]$. The union of ℓ -faces of bad cubes is denoted by U_n^{ℓ} .

イロト イポト イヨト イヨト 二日

Thank you for your attention !

글 > : < 글 > The 28th of February

Э

10/10