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Abstract

For maps f in the Sobolev space WLkKBN; #), with # a closed manifold, Bethuel,
Coron, Demengel, and Hélein highlighted the importance, in approximation prob-
lems, of the pullbacks f*w of smooth closed k-forms w on /. When /4 is a
sphere-like manifold and k < p < k + 1, they proved that a W' map to .#" can be
strongly approximated with smooth maps to ./ if and only if all its corresponding
pullbacks are closed currents. We extend this result to W*” maps, with 0 < s < 1.
In the process, we adapt the Brezis—Nirenberg theory of homotopical invariants
to VMO maps on metric measure spaces, establish the existence and some main
properties of integral invariants for VMO maps on Lipschitz manifolds, prove the
existence of distributional pullbacks by fractional Sobolev maps and obtain some
of their properties, including various slicing formulas, and characterize the closure
of smooth maps in terms of restrictions on generic skeletons.

1 Introduction

The topics we investigate here are related to the matter of the strong density of smooth
maps in Sobolev spaces to manifolds. To fix the ideas, consider the space

WP(BN; ) = {f € WH(BY): f(x) € 4},
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where /' is an embedded closed manifold. In general, CW(EN;/V ) is not dense in
WsP(BN; #). This observation goes back to Schoen and Uhlenbeck [62], who noticed
that, e.g., the map x — x/|x| belongs to the space W!(IB%; $?) but cannot be approx-
imated, in this space, with smooth $2-valued maps. This raises two natural questions:
(Q1) characterize (s, p, N, /) such that strong density holds; (Qz2) if strong density does
not hold, characterize the W**” maps which can be strongly approximated with smooth
maps.

The first remarkable contribution in connection with (Q1) is due to Bethuel [5], who
proved that, in W7(BY; #), there is strong density of C W(EN ; /) if and only if: (i) either
p = N; (ii) or p < N and the homotopy group 7|, |(/) is trivial. Several subsequent
contributions (Bethuel and Zheng [9], Escobedo [31], Hajtasz [40], Bethuel [6], Rivie-
re [60], Bousquet [13], Mucci [52], Bousquet, Ponce, and Van Schaftingen [15, 16, 17],
Brezis and Mironescu [21], and Detaille [27]) led to the following final answer to (Q1):
C‘X’(EN ; /) is strongly dense in W*?(BN;.#) if and only if: (i) either sp > N; (ii) or
sp < N and the homotopy group 7|5, (/) is trivial. The answer is also known when
BY is replaced with a general smooth bounded domain in RN (Hang and Lin [42],
Detaille [27]).

Concerning (Qz2), the picture is not yet complete. Again, the first significant contri-
bution is due to Bethuel [4], who considered maps f € W12(B3; §%). For such maps,
one can define the distributional Jacobian (in the sense of Ball [3]), Jac f, which can be
interpreted as the exterior differential d[ f*w] of the pullback f*w of a volume form @ on
$2. The main theorem in [4] asserts that f can be strongly approximated with smooth
$2-valued maps if and only if Jac f = 0. A far-reaching generalization of this result was
announced by Bethuel, Coron, Demengel, and Hélein [8]. A fruitful contribution of [8]
is to highlight the important role played by the pullback of forms by Sobolev maps. The
relevant object here is f*w, where w is a smooth k-form on ./ and f € WLEBN; );
clearly, this is a k-form with & coefficients. A second significant contribution was to
coin the importance of the following topological assumption on ./

[ g"w =0,V smooth closed k-form w on #/' | = g is nullhomotopic. (A)
Sk

The main resultin [8] asserts that, under the assumptions: (i) k < p < k+1 < N; (ii) the
closed manifold .# satisfies (A), a map f € W'P(BYN; /') can be strongly approximated
with smooth .#/-valued maps if and only if, for each smooth closed k-form on /', we
have d[ f*w] = 0 in the sense of distributions. (More precisely, in the sense of currents.)

In [8], the authors present the main lines of proof of the above result. One of its main
ingredients is the characterization of strongly approximable maps via the homotopy type



of their restrictions to “generic” k-dimensional skeletons. This type of characterization
has been subsequently formalized by Hang and Lin [42]. However, a rigorous proof of
the validity of such characterizations (in the W' setting) has only been achieved very
recently by Bousquet, Ponce, and Van Schaftingen [18]. This leads to a full proof of the
results announced in [8].

In our work, we obtain, in fractional Sobolev spaces W** with 0 < s < 1, full counter-
parts of the above described results. In addition to the aforementioned difficulties, we
have to cope with the fact that the pullback f*w has no obvious meaning when s < 1.

We next describe our contributions and how they fit together to prove our main result.

VMO and homotopy. Brezis and Nirenberg [24] carried out a systematic study of the
homotopy classes naturally associated with VMO(.Z; /'), where ., respectively /', is
a smooth compact manifold, respectively closed manifold. In our setting, a relevant
A is the boundary of a cube. In Section 2, we establish the counterparts of the results
in [24] in the rather general case where .# is a compact metric measure space with
a doubling measure. This seems a natural generalization and we hope that it is of
independent interest. In particular, the mollifiers that we construct may prove useful
in other contexts.

Integral invariants. In Section 3, we consider non-smooth versions of the integral
invariants of the form .7 (f) := f 4/ @, where /4 and /" are smooth closed manifolds,
f: Ml — N is smooth, # is k-dimensional, and w is a smooth closed k-form on /.
In the smooth case, it is well-known that this is a homotopical invariant acting on de
Rham cohomology classes. We extend this result to Lipschitz closed manifolds ..
Here, we opted for a completely elementary approach, avoiding geometric measure
theory language and tools. We hope that making this part of the text low tech and
essentially self-contained was worth a few extra pages.

Estimates for #(f). A first major difficulty in the proof of the main theorem arises in
the estimate of #(f). When .4 = # = $¥ and f € W*", with sp = k, this has been
obtained in [11]. In Section 4, we extend the result in [11] to general ./ and /.

The distribution f*w. In Section 5, we investigate whether one can naturally asso-
ciate a distribution with f*w. This topic has been originally addressed by Brezis and
Nguyen [23] when .# = # = $F and w is the standard volume form. We obtain
counterparts of their results in the general case. We hope that this provides a muggle’s
approach to some “magical” identities in [23]. This route will be further pursued in

[29].

A higher dimensional version of 7(f). A second major difficulty in the proof of the main
theorem is related to the definition of the exterior differential d[ f*w] when dim .# > k.



(In our case, / is typically a ball of dimension > k.) Unlike the analysis in Sections
2 and 3, which naturally involves VMO maps, in this setting the right regularity of
maps is Sobolev. Our first main result in Section 6 provides, roughly speaking, a robust
definition for d[ f*w] when f € W*P(; /'), dim M > k,and sp = k. This generalizes a
resultin [11], which corresponds to # = §k+1 = 8§k and w the standard volume form
on $¥. (See also [41, 14].) A similar direction of research was also investigated, using
the language of geometric measure theory, by Giaquinta, Modica, and Soucek [37] for
wi/z2 maps with values into st by Giaquinta and Mucci [38] for wi/z2 maps into
more general targets, and by Mucci [53] for WY/P maps with p > 1. These latter
contributions are in line with the theory of Cartesian currents, developed by Giaquinta,
Modica, and Souéek in W17, and culminating with the monograph [35, 36]. Our
approach is purely analytical and avoids geometric measure theory.

We next show that, at least when f is sufficiently nice, d[f*w] encodes the singular
set of f and the topology carried by the singularities. The first result of this type
is due to Brezis, Coron, and Lieb [19]. For other similar results, see Jerrard and
Soner [45, Theorem 1.2], Alberti, Baldo, and Orlandi [1, Theorem 3.8], and Bousquet[13,
Proposition 1]. The result we prove was initially obtained by Giaquinta, Modica, and
Soucek [36, Section 4.2, Theorem 1]. However, the reader may find instructive our
different approach, relying only on an iterated use of the Stokes formula.

Slicing. A third major difficulty arises from the disintegration of d[f*w]. When
f € WYk, a simple application of the Fubini theorem allows to recover d[f*w] from its
(k + 1)-dimensional slices. In the fractional Sobolev setting, a similar disintegration
formula was obtained Mironescu, Russ, and Sire [51, Lemma 3.12] when /" = $! and
w is the standard volume form. In Section 6.4, we prove such a formula in the general
case.

A first answer to (Q2). In this context, it is more convenient to work with maps defined on
RN (with0 <s <land1 < k < sp < k+1 < N). A main result in Section 6.5, Theorem
6.16, asserts that a map f € W*?(RN;.¥) is approximable with smooth ./-valued
maps if and only if, on “sufficiently many” grids, its restriction to the boundaries of
(k + 1)-dimensional cubes is nullhomotopic. This relies on approximation techniques
devised in [21]. A specific feature of the case 0 < s < 1 (as opposed to the case where
s is an integer, investigated in [18]), is the conceptually simpler approach for strong
density proposed in [21], which substantially simplifies our task, especially when we
have to quantify the notion of “genericity”.

Providing a rigorous proof of Theorem 6.16 is one of the main contributions of our
work.



A second answer to (Q2). In Section 6.6, we prove the fractional counterpart of the main
result in [8]. More specifically, we prove that, if (i) 1 < k < sp < k+1 < N; (ii) the
closed manifold ./ satisfies (A), amap f € W3?(BYN; /') can be strongly approximated
with smooth //-valued maps if and only if, for each smooth closed k-form on ./, we
have d[ f*w] = 0 in the sense of distributions.

The proof follows the strategy in [8] and relies on all the above analytical tools and
results. Its three main steps are: Step 1. Starting from higher-dimensional integral
invariants and using a dimensional reduction relying on slicing, we determine the
integral invariants on the boundaries of (k + 1)-dimensional cubes. Step 2. Using
assumption (A) and the value of the integral invariants computed in the first step, we
obtain a homotopical information on the restrictions of f to the boundaries of (k + 1)-
dimensional cubes. Step 3. We conclude using the homotopical information obtained
in Step 2 and the first answer to (Qz).

When ./ = Sk, the above result takes the following simpler form: a map f €
WP (M; S¥) is approximable with smooth $¥-valued maps if and only if Jac f = 0,
where Jac f is the distributional Jacobian introduced in [11] and [14]. This result was
announced in Mucci [54]. As in our approach, the proof in [54] follows the main lines
in Bethuel, Coron, Demengel, and Hélein [8], with a sketch of the slicing argument.

About assumption (A). Assumptions in the spirit of (A) are crucial in various contribu-
tions subsequent to [8], including, but not only, Giaquinta, Modica, and Soucek [35, 36],
Pakzad and Riviére [57], Giaquinta and Mucci [39], Canevari and Orlandi [26], and
Bousquet, Ponce, and Van Schaftingen [18]. In Appendix A, we clarify how assumption
(A) compares with the ones in the aforementioned references.

2 Homotopy classes of VMO maps on doubling metric measure spaces

In this section, with no claim of originality: (a) .# is a compact doubling metric
measure space (see below); (b) ./ is a closed manifold. We carefully adapt to this
setting the results of Brezis and Nirenberg [24] concerning the existence and some basic
properties of the homotopy classes of the space VMO(/; /). (In[24, 25], # is a compact
manifold.)

More specifically, we assume that . is a compact metric space endowed with a
non-trivial (finite) Borel measure u satisfying the doubling property

By,
HB2X) o e a0, (2.1)

3C y < oo such that 0 < <
“ u(B,(x))

(The balls we consider are open, but we could have also considered closed balls.)



The prototypical example of .# we have in mind is .# = JC", where C™ is a cube
in R™, with dist the geodesic or Euclidean distance and u the (m — 1)-dimensional
Hausdorff measure.

Throughout this section, we assume that the doubling condition (2.1) holds. This is a crucial
condition. In contrast, .Z is assumed to be compact mainly in order to stay on the “safe
side” for all the statements in this section; in many of them, we could have assumed
that ./ is merely bounded or totally bounded.

We note that the boundedness of .# and the doubling condition (2.1) imply that there
exists some C, > 0 such that

u(By(x)) > C,,Vx € M. (2.2)

We also note also that, since .# is bounded, we have the following straightforward
property:

if (2.1) holds for any 0 < r < rp and any x, then (2.1) holds for any r and x.  (2.3)

2.1 BMO and VMO on doubling metric measure spaces

We first define BMO. For f € ZY(#) = L1 (M;R), we define the seminorm

flovo = sup fB . fB I = FIdp() ), (2.4)

xeM,0<e<Leg

and let
BMO = BMO() = BMO(/; R) = {f € L (M):|flpmo < o}

Similarly for maps in £!(.;R").

In the above definition, ¢y > 0 is a fixed constant. “By default”, we let &g := diam ()
(if 4 contains at least two points), but, under the mild assumption that . is connected,
€0 could be any positive number (see below).

We first establish a variant of [24, Lemma A.1].

Lemma 2.1. (1) Assume that &y > diam (). Then there exists a finite constant C =

/ f
M

(2) Assume that M is connected. Then (2.5) holds for some finite constant C = C(M, 4, €o).

lflln < Clflmo + ,V f € BMO. (2.5)




Proof of item (2). We will use the following straightforward property: (P) if .# is con-
nected, then any measurable function locally constant a.e. is actually constant a.e.

With no loss of generality, we may consider only functions with zero integral. We
argue by contradiction. Assume that there exists a sequence (f;) ¢ BMO such that

/ £ =0, filemo — 0, and ||l = 1.
/A

Since ./ is compact, we can cover ./ with a finite number of balls B (x;), 1 < i < N.
For fixed i, we have

fl;é-o(xi) fity) - fzsfo(xi) Z

Using (2.6) and |[|fjll1 = 1, we find that (fB (x')f]')‘ is bounded (for every fixed 7).
€0 1 ]

du(y) < |fjlemo — 0. (2.6)

From the above, we deduce that, up to a subsequence: (j) ( fB (x:) f]) _converges to some
€0 1 ]

constant a;; (jj) on each B(x;), f; converges to a; a.e. and in Z1. Since (Bey(xi)1<i<n is
an open cover of ./, all the constants a; are equal (by the property (P)), so that f; — a1 in
FNM). Since f Y fj =0, we find thata; = 0, and thus f; — Oin ZY(M). This contradicts
the assumption || fjl; = 1. |

Proof of item (1). The proof is essentially the same as above. Property (P) is not needed
in this setting since, for any x; € .4, we have ./ = B,(x;). O

Corollary 2.2. Assume that M is connected. Then two different values of ¢g yield equivalent
seminorms on BMO.

Proof. In view of (2.5), it suffices to prove that, if 7y < &g, then we have, for some finite
C= C(T’o P 80),

f f () - F()l du(y) du(z) < ClIfll,
Bp(x) ¢ Bp(x)

erffls.t./f:O,Vxeﬂ,Vro<p§eo.
M



With p as above and C, as in (2.2), this follows from

F f - feldwaue)
By(x) J By(x)
1
B, /Bp<x) /Bp(x)lf () - f@)ldp(y) du(z)

1
: W /Bp(x) / p(x)[lf W)+ f @I du(y) du(z)

= < e o

We now turn to VMO and its basic characterizations and properties, in the spirit of
Sarason [61]. For f € BMO and r > 0, define

M,(f) = sup f f |f(y) = f(2) dp(y) du(z) < |flsmo,
s<r ¢ Bs(x) J Bs(x)

xeM,0<s<

and
Mo(f) = lim M, ).

We denote VMO = VMO(.Z) = VMO(A ; R) the closure of continuous functions with
respect to the BMO seminorm, i.e.,

| - [BMO

VMO = C(4)/R ) (2.7)
Similarly for VMO(/;R"). We also denote

dist(f, VMO) := gelxrfll\f/[olf - glBmo.

We next introduce an approximation procedure adapted to the study of VMO under
the doubling condition (2.1). For x, y € # and ¢ > 0, let

-1

p(x, &) = [ - dist(x, y)]., K(x, ) i= ( / p(x,e,wdu(y)) , 28)
and set
£.(x) = K(x, ) / o(x, e,y>f<y)du(y>=f Fdlp(x, &, . (2.9)
M M



For further use, let us note the following straightforward inequalities.
Lemma 2.3. We have, for every x € M and ¢ > 0,

€
EXBE/Q(x) < p(x, €,") < EXB.(x)s

S < [ pr,e, ) duty) < ew(B (),
M

1 2Cu
en(Bo(x) — Kl ) < ep(Be(x))’
1

2Cu
N D [\ < K X, € X, €, L ——= (x)-

(2.10)

(2.11)

(2.12)

(213)

Proof. The inequality (2.10) is clear. Integrating (2.10) yields (2.11). Then, (2.12) follows

from (2.11) and the doubling assumption (2.1). Finally, (2.13) is a consequence of (2.10)

and (2.12).

The next result is crucial for the existence of well-behaved homotopy classes.

Lemma 2.4. The map M % (0, 00) 3 (x, €) — f.(x) is continuous.

O

Proof. Since f is integrable and . is compact, it suffices to prove that K(x, €)p(x, €, v)

is continuous with respect to (x, ¢, y). Clearly, p(x, ¢, y) is continuous with respect to

(x, €, y). On the other hand, we have

o> ) 2 [ pla,e,y)dute) = Gu(B() >0,

so that K(x, ¢) is well-defined and continuous with respect to (x, ¢).

We have the following versions of [24, Lemma A.5, Corollary 1].

Lemma 2.5. There exists a finite constant A = A(M, 1) such that
My(f) < dist(f, VMO) < AMy(f), ¥V f € BMO,
and
If = felpmo < AMo(f),V f € BMO,VO0 < € < g/2.
In particular, we have

VMO = {f € BMO: My(f) = 0}.

Corollary 2.6. For f € VMO, we have f. € VMO and f. — f in BMOas ¢ — 0.

(2.14)

(2.15)

(2.16)



We will often use Corollary 2.6 in conjunction with the following observation.
Lemma 2.7. For f € LY (M), we have f. — fin L1 ase — 0.

The proof of Lemma 2.5 relies on the following straightforward variant of [24, Lemma
AL6].

Lemma 2.8. For any given numbers 0 < r < p, any ball B,(x) C . can be covered with a
finite number K of balls B,(x;) with x; € By(x), i = 1,...,K, such that dist(x;, x;) > r for
i # jand

K
D H(By(x) < (C.a)*p(Bp(x)).
i=1

(The number K may depend on r, p, and x.)

Proof of Lemma 2.8. Since / is compact, there exists a (finite) maximal collection of
disjoint balls B,>(x;), 1 < i < K, with centers x; in B,(x). For any point x" € By(x) \
UIKZ 1 By j2(x;), there exists some 7 such that dist(x’, x;,) < r (for otherwise we can add
B, 2(x’) to the collection, which contradicts its maximality). Therefore, we have

K
By(x) € ) Br(x).
i=1
Since

B, j2(xi) € Byyrja(x) C Bop(x)

and thus
K
D By a(x) < p(Bap(x)),
i=1

the doubling assumption (2.1) yields

K K
D uB(x) < C D (Bypa(x1)) < Crpi(Bap(x) < (Ca)*p(By(x)). 0

i=1 i=1

Proof of Lemma 2.5. We first prove that

My(f) < dist(f, VMO), V f € BMO. (2.17)

10



Clearly, if f, g € BMO, then, for any r > 0,

Mr(f) < Mr(f - g) + Mr(g) (2-18)

On the other hand, if g € C(4), then g is uniformly continuous and therefore
Moy(g) = 0. Letting r — 0 in (2.18), we find that

Mo(f) < Mo(f —g) < |f —glsmo, YV f € BMO,V g € C(4). (2.19)

Inequality (2.17) follows from (2.19) and the definition of VMO.

We next assume that (2.15) holds. Then, combined with Lemma 2.4, it implies that
dist(f, VMO) < AM».(f),V f € BMO, Ve > 0. (2.20)

Letting ¢ — 0 in (2.20) yields the second inequality in (2.14).

Therefore, it suffices to establish (2.15), which amounts to the existence of some finite
A, independent of f and of ¢ and r as below, such that

f f (F = £)0) — (f — £)(@) du(y) duz) < AMae(f),
By(x) ¢ By(x)

(2.21)
VO<e<e/2,V0<r <.
Proof of (2.21) when r < e. We first note that
F 0= A - @)+ £ dal) dutz)
Br(x) (%)
<f F V-l A+ sup 1) - £ (222)
By(x) ¢ By(x) Y,2€B(x)

<M (f)+ sup |fe(y) - fe(2)I.

y,2€B;(x)

In order to estimate the latter quantity in (2.22), we start from the identity

fy) - £(2)
= 5w | Kepte, e dutn ~ £) [ Ky, op(y, &) aute) (23)

= //% //%K(y, e)K(z, &)p(y, €, &)p(z, &, MIF(E) = F]du(E) du(n).

11



Combining (2.23) and (2.13) we obtain, for y, z € B,(x),

|fé(y) - fé(z)l
4(C)*

R ) /B . /B PUCEGLETEETD o2

< 4(Co)f f f F(©) = FI du(E) duy) < 4C.0)*Mae(f),
Boe(x) o Bae(x)

where, in the last line, we use the fact that By.(x) C B4.(y) and thus, thanks to (2.1),

B(B2e(x)) _ p(Bae(x)) p(Bae(y)) ,
KBW)  pBa) pBy) (2.25)

Combining (2.22) and (2.24), we obtain, for 0 < r < ¢,

f f @) = Foly) — F(2) = Fol@)] dus(y) du(z) < B(C.a)f + DMac(f). (2.26)
B,(x) J B,(x)

Proof of (2.21) when r > ¢. By Lemma 2.8 and the doubling assumption (2.1), B,(x) can
be covered by a finite number of B.(x;) such that

D 1(B(x) < (Ca'u(B,()). (227)
Using successively (2.13), (2.25), and (2.27) , we have

fl;y(x) fomlf(y) ~ fe(y) = f(2) + fe(2)| du(y) dp(z)

<2 fB r(x)lf (v) - fe(y)ldu(y) < m Z /B s(mlf (y) - fe(y)| dp(y)

2
" u(B(x) Z /Bg(xi)

2
< B / N / KO 9p, e 1) - FEN ) dpy)  @28)

du(y)

/B K0y, ) @) dpta
ey

4C 4
V(B (x)) Z/B (X)/B(y) u(B. (y)) |f(y) = f(2)| du(z) dp(y)

4(Cp)? )
= WB, () Z/BZ{(X,,) /BZL(x,,) By W)~ f@)du) duy)

3

12



Combining (2.26) and (2.28), we obtain
|f = felpmo < (4(Ct)® + DMae(f), V f € BMO, V0 < € < &9/2,

so that (2.21) and (2.15) hold with A := 4(C_4)® + 1. O
Proof of Corollary 2.6. Combine (2.15) and Lemma 2.4. |
Proof of Lemma 2.7. Set

T.(f) = fe,V f € LY (M),¥ e > 0.
Clearly: (j) T; is linear; (j) if f € C(#), then, as ¢ — 0, T.(f) — f uniformly, and thus

in Z1(). In order to conclude (via (j), (jj), and density), it suffices to find some finite
constant C such that

Tell (1)1 ary) < C, V€ > 0. (2.29)
Estimate (2.29) follows from (2.13), which yields
TPl < [ [ K epte, el F )l duto
M J

1
<2C, /ﬂ B o O )

1
_a2c, /ﬂ W) /B ) LG 4w )

1 )
<2¢a [0 [y 0 du)

2 1 _ 2
2P [ 1 || | e dnt dut) = 2P Il

where we have used the obvious inclusion B,(y) C By.(x) and the assumption (2.1). O

2.2 Homotopy classes of VMO(.Z; /)

If # € R", we naturally define
VMO(; V) = {f € VMO(M;R"): f(x) e ¥/ ,Vx € M},

and similarly for BMO(./; /).

13



Of interest to us is (only) the case where ./ is a closed submanifold of R"”. One could
consider the more general situation of an abstract compact Riemannian manifold, and
naturally define VMO(; /') or BMO(.; /') by isometrically embedding .4 into some
R". It turns out that the definition does not depend on the choice of the embedding
(as we next explain), and thus we can fix once for all the embedding and consider .4
as a subset of R". To justify this independence, we note that, since ./ is compact, if
Dj: N — N; CR",j=1,2, areisometric embeddings, then the geodesic and Euclidean
distance on each A are equivalent, and thus the transition map @ = @, 0 o7 Ly — M
is bi-Lipschitz. The independence of VMO(/; /') or BMO(; /') on the choice of the
embedding is then clear, from (2.4).

In view of the above, from now on, we assume that N is a smooth closed manifold embedded
inR". Wealso recall that we assume that J is compact and satisfies the doubling condition (2.1).

We first note the following simple result.

Lemma 2.9. For every integrable map f: M — N, we have
dist(fe(x), /) <2C.uMc(f), Vx € M,V e > 0. (2.30)

Proof. For every y € M, we have dist(f:(x), /) < |fe(x) = f(y)l, so that (using (2.13))

dist(f. (x), ) < f )= eIy

&€

- st(x) -/Bg(x) K(x, e)plx, &, 2)If(y) = f(2)l du(z) du(y)
<20 f f V@-f@IaEE < 2cMp. o
Be(x) ¢ Be(x)

We next introduce a convenient projection on /.

Definition 2.10. For sufficiently small 6 = 6(./'), we let IT be the nearest point projection
from A == {z € R":dist(z, /) < 6} to A
Here, 6 is chosen such that I'T is well-defined, smooth, and has bounded derivatives.

In what follows, 0 is implicitly assumed to be sufficiently small such that IT has all
the above properties.

By (2.30) and (2.16), for each f € VMO(/; /'), there exists some ¢; = ¢1(f) such that

fe(x) e Ns,Vx € MNV0 < e < ¢. (2.31)
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Therefore, if we set
fé=Ilofe:ll —- N, (2.32)
then f¢ is well-defined, V0 < ¢ < ¢1. By Lemma 2.4, if (2.1) holds, then the mapping
0,ée1]3 e fEeC(; ) (2.33)

is continuous, and therefore the following definition makes sense.

Definition 2.11. For f € VMO(/; /'), we define the homotopy class [f]of f by [f] := [f¢]
for small ¢, i.e.,

[f1={h e C(M;N):h ~ f* for some ¢ < &1}. (2.34)

Two maps f, g € VMO(A; /') are homotopic (and this is denoted f ~ g)if [f] = [g].

We first note that (by (2.33)), in (2.34), it is equivalent to ask that i ~ f¢ for some ¢ or
each €. We next note that, when f is continuous, [ f] is the classical homotopy class of f.
Indeed, in this case f, — f, and therefore f¢ — f uniformly as ¢ — 0, so that the claim
follows from the stability of the homotopy classes.

We next prove the fundamental fact that the homotopy class is stable under BMON 1
convergence (analogue of [24, Theorem 1]).

Proposition 2.12. Let f € VMO(AM; V). Let €3 = ef) < eo be such that M,(f) <
0/(8C x). Then, with C, as in (2.2), we have

[g € VMO(A; ), |g = flemo < 6/(8C.a), IIf — gll1 < 6Ce,/(4C )] =

2.
[~ f50< e < e (2.35)

In particular, under the assumptions of (2.35), we have g ~ f.

Corollary 2.13. If (fj) € VMO(A; V), f € VMO(M; V), and f; — f in BMON L, then,
for large j, fj ~ f.

Proof of Proposition 2.12. Let ¢ satisfy the assumptions of (2.35). By (2.18), we have
Mg,(g) < 06/(4Cx), V0 < ¢ < &, and thus (by (2.30))

fe(x), ge(x) € Nsjp, Vx € M,N0 < € < &3. (2.36)

In order to complete the proof, we prove that g2 ~ f2. For this purpose, it suffices
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to establish the estimate

||g52 _fszlloo <0/2. (2.37)

Indeed, granted (2.37), we have, thanks to (2.36),

(T =1)fe,(x) + £ Qe,(x) = fer () + 1(gey(x) = fer(x)) € N5, Vx € M,NO <t <1,

and thus [0,1] 3 t = II((1 - t)fe, + tgs,) is a homotopy between f2 and g®.

But, we note that (2.37) follows, under the assumptions of (2.35), from

136 = ful)  Z=sllg = f1h < T2l < 072

where we have used (2.13). O

Although we will not use the next result in what follows, we state it since it gives
some insight concerning Definition 2.11.

Lemma 2.14. For f, ¢ € VMO(M; V'), we have
f~ge[3FeC(0,1];(VMON LYY ;W) s.t. Fo = fand F; = g].

Here, we use the standard notation F; := F(¢, ).

Proof. “=" Since f ~ g, by definition, there exists some sufficiently small € such that
f¢ ~ g° for every ¢ < ¢, which implies that there exists a continuous map H: [0,1] —
C(; W) such that Hy = f€ and H; = g¢. Then define F as follows:

1, ift=0
1, if0<t<e

Fi = {Hy_5/a-2¢), ife<t<1-%.
g, ifl-ge<t<l1
S ift=1

Since C(«; V) — (VMO N L) (M; V), t — F; belongs to F € C((0,1); (VMO N
LY ; ). In order to prove the continuity of F on [0, 1] and complete the proof of
“=", it therefore suffices to check the continuity at t = 0 and ¢+ = 1. For this purpose,
we rely on Corollary 2.6, Lemma 2.7, and the fact that the superposition with Lipschitz
functions is continuous in VMO (see Brezis and Nirenberg [24, Lemma A.8]).
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“«<" By Proposition 2.12, the map t + [F;] is locally constant. By a standard argument,
it is constant, whence the conclusion. O

A final result in this section concerns maps such that | f|pmo < 1.
Proposition 2.15. There exists some positive constant C = C(M, N') such that

[f e VMO(A; V), |flemo < C] = f ~ & for some point & € N (2.38)

If, in addition, W is connected, then (2.38) holds for any & € N'.

Proof. We may assume that &g = diam .# (see Corollary 2.2). Let f € VMO(/; V).
Since M = B,(x), V x € M, there exists some z = z(f) € ./ such that

f/f(y) ~ F@) du(y) < [flavo. (2.39)

Set £ = f(z) € #. From Proposition 2.12 (with the constant map & playing the

role of f and ¢ = ¢ = diam.#) and (2.39), we find that (2.38) holds, provided
5  Ceou(M)

8Cy’ 4ACy )

C< min( m|

3 Integral invariants for VMO maps to manifolds

In this section, again with no claim of originality, we assume that: (a) ./ is a Lipschitz
k-dimensional manifold embedded into some R, endowed with a finite bi-Lipschitz
chart structure, considered as a metric subspace of R” and endowed with the natural
measure, i.e., the k-dimensional Hausdorff measure #*; (b) ./ is a closed smooth
manifold embedded into some R”; (¢) w is a smooth closed k-form on /. (For .#, the
prototypical example we have in mind is /# = dC k+1 with C**! a cube in R¥*1) The
main objective here is to give, when . is compact, a robust meaning to / o/ @ when
f e VMO(A; ).

To be more specific, the instrumental definition of Lipschitz manifolds we adopt here
is the following.

Definition 3.1. A k-dimensional finite chart structure on # C R™ is a finite family
{(U;, Vi, @i)}ier such that:

(i) U;isopenin /# c R™,Vi €I, and | J;¢; U; is a cover of /;
(ii) V;is an open subset of RF Viel;

(iif) ¢@;: V; — U; is bi-Lipschitz, Vi € I.
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A (k-dimensional) Lipschitz manifold is a set ./ embedded into some R™ and endowed
with a k-dimensional finite chart structure (in the sense of Definition 3.1).

Considering a finite chart structure is a matter of convenience. As we will see, working
with Lipschitz maps requires excluding exceptional null sets, and we wanted to avoid
working with infinite unions of null sets. In practice, .# will most of the time be
compact, so that considering a finite chart structure is not a real limitation. Another
not so common feature is the bi-Lipschitz character of the ¢;’s (this condition is clearly
satisfied, at least locally, in the smooth case). This is also a matter of convenience, for
avoiding using the decomposition of rectifiable sets as images of bi-Lipschitz maps (see,
e.g., Federer [33, Lemma 3.2.18]).

Smooth closed manifolds are examples of such .#’s. More generally, if / is bi-
Lipschitz homeomorphic with some smooth closed manifold .#’, then .#’ naturally
induces a chart structure on .Z. This includes, as special cases, dC**+1 and more gener-
ally, B, where B is a ball for some norm in R**! and even more generally, boundaries of
convex bodies in R¥*!. Indeed, such boundaries are bi-Lipschitz homeomorphic with
the Euclidean unit sphere Sk, (See, e.g., Section 3.4 below for more details.)

This section is organized as follows. First, we prove, in Section 3.1, that .# as above,
when compact and endowed with the natural distance and measure, fits into the frame-
work developed in Section 2.1. Next, in Sections 3.2-3.6, we carefully adapt notions as
the tangent space, the differential, and the calculus with forms (exterior calculus, pull-
back, integration on oriented manifolds) to the context of Lipschitz manifolds. Since our
final purpose is to establish integral estimates associated with such forms, we adopt an
analytic point of view, working mainly in local coordinates. While consistent with the
smooth case, this approach has the advantage of making obvious the main properties
of the calculus with forms. Finally, in Section 3.7, which is at the heart of this part,
we define / Y f*@w when # is compact, f € VMO(4; /), and w is a closed smooth
k-form on ./, and prove that this quantity is a homotopical invariant. In Section 3.8, we
consider the special case of W'** maps and prove that, as expected, in this case f o
is a genuine integral.

Although most of the results we establish in Sections 3.2—3.6 can be derived from
more general advanced assertions from geometric measure theory (we have in mind in
particular the analysis on rectifiable sets and on finite perimeter sets, as in [33, Section
3.2], and the homological integration in [33, Chapter 4]), we have opted for a low tech and
essentially self-contained exposition that does not require any knowledge of geometric
measure theory.
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3.1 Compact Lipschitz manifolds are doubling metric measure spaces

In this short section, . is compact and is endowed with a finite chart structure in the
sense of Definition 3.1. We establish the following result.

Lemma 3.2. We endow M with the Euclidean distance (or any distance induced by a norm on
R™) and with the Hausdorff measure %*. Then M satisfies the doubling condition (2.1).
If M is connected, then the same holds for the geodesic distance.

Proof. Since all the above distances are equivalent to the Euclidean distance on .# (for
the geodesic distance, this follows from Definition 3.1 (iii)), it suffices to consider the
Euclidean distance | - |. Let 0 < K7 € K, < o0 be such that

K1|U - '(/Ul < |§01(U) - (Pl(w)l < KZlv - wl/ Vi,VU, w e Vi- (31)
We claim that, if B € U; is a Borel set, then
(K)k* (@ (B)) < ¥ (B) < (Ko)* 7" (97 (B)). (3.2)

Indeed, (3.2) clearly follows from: (i) the fact that a K-Lipschitz map ¢: A ¢ R" —
R can be extended to a K-Lipschitz map to the whole R"! (Kirszbraun’s theorem); (ii)
the fact that, if ¢ : R — RR™ is K-Lipschitz, then

Z°(p(B)) < K°#*(B),Vs >0,VB c R™ aBorel set.

Let g be such that for every x € ., there exists some i such that B,,(x) c U;. Let
x € M. If r <rpand i are such that B,(x) c U;, we write x = @;(v) for some v € V;. By
(3.1), we have

B,/k,(v) C ¢;'(B;(x)) C Bk, (v). (33)
Combining (3.2) and (3.3), we find that
FH*B,(x) ~ 15, VO <r<ry,Vxe. . (3-4)

We conclude via (3.4) and (2.3). O

From now on, any compact Lipschitz k-manifold is implicitly assumed to be endowed
with the Euclidean distance and the k-dimensional Hausdorff measure.
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3.2 Tangent spaces on Lipschitz manifolds

We are here in the setting of Definition 3.1 and .# need not be compact. Coordinates
of points in R¥ and R™ appear as superscripts, e.g., v = (v}, ..., 0"). The differential of
amap ¢ at v is denoted D,¢. The canonical basis in R* is denoted {e1, . . ., ex}.

For every i € I and almost every v € V;, ¢; is differentiable at v (by Rademacher’s
theorem). If x = ¢;(v) for such v, then we set

d |  dopi . d d
W } = W(U) = Dv(Pi(ef) = (1n ShOI't) W or w, ! = 1, e ,k, (35)

1

J
Tedl = Dy@;(RF) = -
)= spn 2

:(’:1,...,k}. (3.6)

We first note that the above definitions are consistent with the ones for differentiable
manifolds. We next check that T,.Z enjoys two basic expected properties.

Lemma 3.3. We have dim T,/ = k.
Lemma 3.4. The definition of Ty« does not depend on i.

Proof of Lemma 3.3. We have to prove that D, ; is one-to-one. Let K; > 0 be such that
lpi(v) — pi(w)| > Kilv —w|, YVw € V;. (3.7)

By (3.7), we have

i(v +t&) — @i(v)
t

IDogpi(&)] = lim > K]l V& € RE,

whence the conclusion. O

Proof of Lemma 3.4. Assume that x = ¢;(v;) = @;(v;), with ¢;, respectively ¢;, differen-
tiable at v;, respectively v;. It suffices to prove that Dy, ¢;(R¥) and D, P ;(R¥) have the
same unit sphere. By the proof of Lemma 3.3, Dy, ¢; and Dy, ¢; are one-to-one. In view
of Definition 3.1, the conclusion of the lemma follows from the following

Claim. Let V C RF be an open set. Let p: V — @(V) c R" be such that: (i) 0 € V
and @(0) = 0; (ii) ¢ is differentiable at the origin; (iii) Do¢ is one-to-one; (iv) ¢ is a
homeomorphism. Then, for w a unit vector of R™, we have

w € Dpp(RF) = 3(xj) € (V) \ {0} s.t. x; — O and % — w. (3.8)
]
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To establish the claim, let first w be a unit vector in Do(p(]Rk). Let & € R be such that
Do@(&) = w. Then, for large j, xj := @(j~1&) belongs to ¢(V) \ {0} and satisfies x; — 0
Xj
||
inclusion, let (x;) be as in (3.8). Write x; = ¢(v;), with v; € V' \ {0}. By the assumption
(iv), we have v; — 0. Write v; = t;&;, with t; > 0, &; € R, &l =1,t; = 0. Uptoa
subsequence, we may assume that & j — & By the assumption (iii), we have Do (&) # 0,

and — w. (Here, we do not use the assumptions (iii) and (iv).) For the reverse

and then one easily sees that

o etE) | Dep(e)
W= E ~ Degp@)

= Do(&/|Dog(&))). H

In what follows, we implicitly consider only reqular points x € ./, i.e., points x such
that, if x = @;(v;) for some i, then ¢, is differentiable at v;. By the above, the complement
of the regular points is an #*-null set, and the tangent space at any regular point x € U;
is expressed via (3.5)—(3.6).

Remark 3.5. A digression about measurability issues. Given a locally Lipschitz function
¢:V — R, where V is an open set in R¥, the exceptional set A of points where g
is not differentiable is a Borel set. Moreover, the gradient (and thus the differential)
V\A 3 x — Vg(x) € R is a Borel function. Both these properties are well-known
to experts, but we could not find a reference. They may be derived, for example, by
following the proof of Rademacher’s theorem (see, e.g., Evans and Gariepy [32, Section
3.1]), which implicitly contains explicit formulas for A and for Vg allowing to check
their Borel measurability.

In what follows, we do not discuss anymore measurability issues but, following this
remark, it is easy to prove that all the forms and functions we construct below are Borel
measurable and defined up to an % *-null Borel set. |

3.3 Lipschitz maps on ./Z: differential and pullback of forms

Here, we are again in the setting of Definition 3.1 and .# need not be compact. We
consider (locally) Lipschitz maps defined on ., since this setting is sufficient for most
of the applications we have in mind (see, however, Section 3.8 for WLk maps), but with
more effort some of the results below can be extended to approximately differentiable
maps.

Given a locally Lipschitz function f: .# — R, we define, for #*-a.e. x € 4, d,f as
follows.

Definition 3.6. Let x = @;(v) € / be a regular point such that f o ¢; is differentiable at
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v € V;. We define

dxf: Txﬂ - ]R/ dxf(Dv(Pi(é)) = Dv(f 0 (Pl)(é)/ vé € ]Rk- (3'9)
Similarly when f: # — R".

We note that the above definition is consistent with the one for smooth manifolds
and, by Rademacher’s theorem, d, f is defined except on an #*-null set. (This null set
depends on f.)

We first check that the definition is correct, in the sense that it is independent of
the chart. This is a straightforward consequence of the chain rule combined with the
following result.

Lemma 3.7. Let x = ¢i(vi) = @j(vj) € M be a regular point. Let W; := (p].‘l(llz- N Uj) and
W; = goz.‘l(lli NU;). Then

Q= (pl._l opj: Wi = W;
is differentiable at v;.

Proof. With no loss of generality, we may assume that U; = Uj, vi = v; = 0, and
®i(0) = ¢;(0) = 0. By Lemmas 3.3 and 3.4, there exists a unique (linear, bijective) map
A: R = RF such that

Dogj(a) = Dogi(Aa), Va € R-. (3.10)

Forw € Vj, lety = (pi‘l((pj(w)) € V;. The conclusion of the lemma follows from the
equality

y=Aw+o(lw|)asw — 0, (3.11)

that we next prove.
By the assumption (iii) in Definition 3.1, we have

ly| ~ |w|asw — 0. (3.12)

Next, using: (i) (3.10); (ii) the equation ¢;(w) = @;(y) under the self-explaining form
Dogj(w) + o(|w|) = Dogi(y) + o(ly|); (iii) the equivalence (3.12), we find that

Dogi(Aw) + o(Jw[) = Dogj(w) + o(lw]) = Dogi(y) + o(|y|)

(3.13)
= Dogi(y) + o[w]). 3
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We obtain (3.11) from (3.13), (3.12), and the fact that Dyg; is one-to-one. O

Remark 3.8. Let ./ be a Cl-submanifold of R” and V be an open subset of R¥. Assume
that ¢: V — R” is differentiable at some point v € V and that g(V) c 4. Itis
straightforward that g, seen as a map from V to ./, is differentiable at v, and that
Dy g(R¥) C Ty(0) ..

This consideration leads to the following. Let f: ./# — ./ be locally Lipschitz. Then,
at each regular point x = @;(v) € A such that f o ¢; is differentiable at v, we have
dxfi T — Tf(x)/V- O

As in the smooth case, we associate with x = @;(v) € U; its “coordinates”
e _ 0 _ 0 R4 _
x'=x;=x(x)=0v,0=1,...,k

The maps U; > x — x! € R are Lipschitz. Moreover, one sees (from (3.9)) that, at
each regular point,

dxxf(% ) =0, 10,0 <k (3-14)

Therefore, when x € ./ is a regular point and 1 < p < k, an alternate form 1 = n(x)

X

of order p (in short, a p-form) on T, .# can be uniquely written as

n(x) = Z M, e,,(x)dxxil Ao Adyx)
1Se]<fz<-"<€‘y§k
. . (3.15)
= (in short) Z ml,._,,gp(x) dyx™ A Adyxr.

1<l <bfp<<ly<k

More specifically, for every fi, ..., f, € Lip(; #)and &, ..., &y € Ty M, we have

dxfl ARERRAN dxfp(éll Tty Cfp) = det(dxfz(éj)) (3-16)
Combining (3.16) with (3.14) and (3.15), this implies that

d

J
ErCEN

AN
X gvpx

). (3-17)

Definition 3.9. If A C ./ is an % *-null Borel subset such that .# \ A consists of regular
points, and if, for each x € ./ \ A, we are given a p-form n(x) as in (3.15), we say that
1 is Borel measurable, respectively bounded, if the (locally defined) coefficients 1y,,...s,
are Borel measurable, respectively bounded.
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As in the smooth case, one checks, using: (i) Lemma 3.7; (ii) the bi-Lipschitz character
of the chart system; (iii) the chain rule, that the Borel measurable or bounded character
of 1 does not depend on the chart.

In what follows, we consider only forms that are implicitly defined up to an #*-null
Borel set A C . as in Definition 3.9.

We next define the pullback of forms in the two special cases we are interested in.

Definition 3.10. If 1) is a p-form on .# defined at a regular point x = @;(v) € /4, we set

() N@)(&L, - .., &) = n(x)Do@i(&1), ..., Do@i(&p), Y1, ..., & € R (3.18)

Definition 3.11. Let /' be a Cl-submanifold of R". Let w be a p-form on .4 (defined
everywhere) and f: # — W be locally Lipschitz. If x = @;(v) € / is a regular point
such that f o ¢; is differentiable at v, we set

fro@)(yi, ..., yp) = o(fNdef (Y1), -, def(yp)), Y1, yp € Tl (3.19)

We note that (3.19) does not depend on i.

Clearly, (¢;)'n is a p-form on V;, while f*w is a p-form on .Z. Moreover, assuming f
Lipschitz and ./ compact, if 1) (respectively w) is Borel measurable or bounded, then so
is (@i)'n (respectively f*w).

On the other hand, with f and w as above, one can classically define, at each regular
point x = @;(v) € M such that f o @; is differentiable at v,

(fepi)w@)(&r, ..., &) = w(f())Dolf 0 @i)(&1), - .-, Dolf 0 9i)(Ep)),
Vér, ..., & e RE

Using successively (3.18), (3.9), and (3.20), we find that

(@) (f'w) = (fopi)w H*ae onV;. (3.21)

Let us note the following obvious consequence of the discussions in this section.

Lemma 3.12. Assume N compact and f: M — N Lipschitz. Let w be a (everywhere defined)
bounded Borel p-form on N'. Then f*w is a bounded Borel p-form on /.
3.4 Orientation

Definition 3.13. The finite chart structure in Definition 3.1 defines an orientation on .#
if, for each i and j, det Dz,(go].‘1 o i) > 0forae. v e o7 (U; NU).
We say that ./ is oriented whenever we are given a chart structure as above.
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As in the case of differentiable manifolds, an orientation allows to define, for #*-a.e.
x € M, the notion of direct basis of T, .Z. On the other hand, if (pi_l (U;NU;) is connected
(which is equivalent to requiring that U; N U; itself is connected, since ¢; is bi-Lipschitz),
then the sign of v - det Dv((p]._1 o ¢;) is constant almost everywhere on ¢ (U; N Uj).
For this (not so obvious) property, the reader may refer to Federer [33, Corollary 4.1.26].

A basic class of oriented Lipschitz manifolds is given by the bi-Lipschitz images of
smooth oriented manifolds.

Example 3.14. Assume that .#’ is a smooth closed oriented manifold, and that # =
g(A") for some bi-Lipschitz map g: #’ — . Then g naturally induces a structure
of oriented manifold on .. Indeed, let the orientation of .#’ be given by a finite atlas
{W:, V!, ¢)}ier. Then, clearly, {(g(U}), V!, g o ¢})}ier endows 4 with a finite chart
structure. This structure defines an orientation. Indeed, for every i and j, we find, using
the fact that the atlas on .#’ defines an orientation, that

detDy((g © @)™ o (g © ¢})) = detDy((¢) ™" 0 ¢}) > 0
foreachv € (g o (p;)‘l(g(llzf) N g(U]’.)) = (<pg)—1(u; N U]’.). O

We now give more insight about the orientation induced in Example 3.14. Motivated
by the applications we have in mind, we focus on the particular case where .#’ is a
sphere and . is the boundary of a convex body (though the same study could be
performed, at the cost of more technicality, for the boundary of a Lipschitz open set).
This class of examples is sufficiently large to include as a particular instance the case
where / is the boundary of a cube, which will be of crucial importance for us in the
sequel.

Example 3.15. Recall that a convex body in R™ is a compact convex subset C of R™ with
nonempty interior. Without loss of generality, we may assume that 0 € int C. Consider
the Minkowsky gauge Ac associated with C,
1
Ac: R"™ = Ry, Ac(y) = inf{t > 0: ?y € C}, VyeR™ (3.22)

The following properties are well-known (and straightforward):

Ac is positively 1-homogeneous, (3.23)
1

when y # 0, the inf in (3.22) is actually a min, and ) y€dC, (3-24)
C

Ac is convex (and thus locally Lipschitz). (3.25)
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Set

1yl Y= y, ify#0
Oc: R™ — R™, Oc(y) =1 Acy)”  Ac(y/lyD) , (3.26)
0, ify=0
A , ifx#0
We: R" - R", We(x) = cle/lxhx, i x # ) (3-27)
0, ifx=0

It is straightforward (using (3.23)—(3.24)) that: (j) ®c (Em) = C; (jj) @c(5™1) = 9C; (jjj)
Wc is the reciprocal of ®c. Moreover, using: (i) the definitions (3.26)—(3.27); (ii) (3.25);
(iii) standard properties of products and superpositions of locally Lipschitz maps, we
find that ®c and W¢ are locally Lipschitz. Combining the above, we find that ®c is
a bi-Lipschitz homeomorphism between B" and C, whose restriction gtoS"lisa
bi-Lipschitz homeomorphism between $”~! and dC. Thus, dC fits Example 3.14, with
k=m-1,.4" =81 and g = Dcigm-1.

Assume that $"! is oriented consistently with Stokes” formula on B", that is, for
every y = @(v) € $”! in the codomain of a chart ¢,

de
4 avm—l

d
the m-tuple (y, a—;ﬁ(v), - (ZJ)) is a direct basis of R". (3.28)

Consider on dC the induced parametrization ¢ := go¢ . We claim that ¢ is consistent
with Stokes” formula on C: if x = 1(v) and ¢ is differentiable at v, then

d d
the m-tuple (x, a—:)l(v), cee, F:f_l(v)) is a direct basis of R"™. (3-29)
Indeed, if we set f(v) = ) ( @) > 0 then: (j) (by (3.26)) ¥ = t; (jj) ¢ is differentiable
at v if and only if ¢ is differentlable at v; (jjj) condition (3.29) is equivalent to

dp ot dp ) -0 (3.30)

ot
det(tg0,8 1(p+tavl,...,avm_lq0+if8vm_1

(where the above determinant is evaluated at v). We complete the proof of claim (3.29)
by combining (3.30) with the fact that (3.28) is equivalent to

dp dp
det(<p,al,...,avm_1 > 0. O

Example 3.16. Let us now consider the special case where C is a cube aligned with the
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coordinate axes. For simplicity, we let C = [-1,1]™, but the considerations below, in
particular the description of the orientation of the faces, do not depend on this specific
choice. Clearly, Ac(y) = |y|« and g is smooth in a neighborhood of y € $”~! provided
ly/| # |y%| when j # . Thus, the procedure described in Example 3.15 provides an
orientation on dC, with parametrizations that are smooth in the interiors of the faces of
dC. Consider, e.g., the open face

Fi={x=(,1):x e R", |x'|e < 1}.
Then, clearly, T, dC = R"~! x {0}, V x € F. Moreover, in view of claim (3.29), we have

((e1,0), ..., (em-1,0)) € (R™ ' x {0})" ! is a direct basis of T,dC

= (_1)m—1 det (61, ey, €m_1) > 0.

Similar considerations apply to the other faces (see also Example 3.18). |

3.5 Integral of forms

In this section, we briefly check that “everything goes as expected” for the integral
of k-forms; this crucially relies on the area formula (instead of the standard change of
variables formula). We assume that: (a) . is a compact k-dimensional Lipschitz mani-
fold oriented by a finite chart structure {(U;, Vi, @i)}ier; (b) (&;) is a Lipschitz partition
of unity subordinated to the covering (U;).

Let n be a Borel k-form defined in some Borel subset U; of U;. By (3.15), we may
uniquely write, for # keae x el

n(x) = ai(x) dxxil ZARRERA dxxl]'(, (3.31)

with «a; a Borel function.

As in the smooth case, we have the following result.

Lemma 3.17. If 1) is defined in U; N U; and a; is integrable on U; N Uj, then a; is integrable
on U; N U; and (with W; and W; as in Lemma 3.7)

/ ajoQ; = / ajo ;. (332)
W; W;

)

Proof. If ¢: W; — Wi; is the transition map in Lemma 3.7, using: (i) Lemma 3.7; (ii) the
chain rule; (iii) the exterior calculus rules; (iv) the fact that ./ is oriented; (v) the area
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formula (for the last line), we find (as in the smooth case)
aj(pj(v)) = ai(pj(v)) det Dyg for Hr-aeve Wi,

and finally

/ aj(j(v)) do = / ai(¢j(0)) detDygp do = / ai(¢j(v)) |det Dygp| do
W; ' '

i Wj W;

_ / ai(¢:((0))) |det Dy do = / ai(i(w)) dw. 0

]

Assume next that 7 is an &1 k-form on ., in the sense that, for each i, a; o Qi is
integrable on V;. Using Lemma 3.17, we see that the definition

/ﬂ’? = Z v,-(éiai) o= Z (&io@i)(aio i) (3.33)

Vi

is correct, in the sense that it does not depend on the choice of the chart structure, and
yields a finite real number. Moreover, this definition is consistent with the one in the
classical setting.

Example 3.18. Consider the special case where . is the boundary of a cube C as in
Example 3.16, say C = [-1,1]**1. We will establish an explicit formula for the integral
of a form on dC. Consider the open faces

Foo={(xb ..., 2 21,25, 2" e 9C: ) € (=1,1), V) # £} ~ (-1, 1),

and F = ;. Fe+, so that JC \ F is an H*null set. Consider a sequence ((j) C
C(F;[0,1]) such that Cj(x) — 1 for Hr-ae x e dC. If 1 is an Z! k-form on dC, then,
by dominated convergence,

:lim/ Cin =lim Cinxe,, = / , (3-34)
/acn i Jac i Iog IR FXEe gzi Fe,in

where Fy . is equipped with the orientation induced by JC.
Moreover, in Fy .. (with + fixed) we may write n = ay « dx!, with the convention
dxl =dx' A dxT AT A - A dxFH (3.35)
and ay + € 1.

As explained in Example 3.16, (—ey, ..., —€p-1, €p+1, . . ., €x+1) is a direct basis of T, dC,
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Vx € Fy+ (and a similar formula holds for F;_). Combining this with (3.34) and (3.35),
we find that

/ n=/ ae,+dx€=(—1)€'1/ a4
Fl,+ Fl’,+ Fé’,+

Similarly for ng . Finally, we obtain

Jor=Yen ([ aveat- [ aax), 630
aC I (-1,1) (-1,1)

where we have identified Fy . with (-1, 1)k with the standard orientation. O

Lemma 3.19. Let f: M — N be a Lipschitz map. Let w be a (everywhere defined) bounded
Borel k-form on &' Then

//%f*wzzi:/vi(éiogoi)(fo(ﬁ)*w-

Proof. Letn := f*wand (ey, ..., ex) be the canonical basis of R¥. In view of the definition
(3.33), it suffices to check that, for every i, the function a; associated with f*w asin (3.31)
satisfies

ai(@i(0)) = (f o i) w(®)(ey, ..., ex) for #*-ae. v eV, (3.37)

At a regular point x = ¢;(v) € U; such that f o ¢; is differentiable at v, we have, via:
(i) (3.17); (ii) (3.19) and (3.5); (iii) (3.20),
0 J

a_,z)ll N e ey a_’z)f( x)
= W(f()De(f 0 Pi)(er), -, Dol © pi)(ex)
= (fope@er, ),

ai(x) = (f*w)(x)(

whence (3.37). ]

Remark 3.20. Let us note a variant of the above considerations and definitions if, instead
of W, we consider the product . = 4 x | with ] = (a,b) C R a non-empty open
interval. Clearly, if # has a (oriented) finite chart structure, then A has a natural
(oriented) finite chart structure, by setting

Vii=VixJ,U; = U; x],3i(0,1) = (¢i(v),1),Yv € V;,Vt €. (3-38)
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Assume that . is compact and [ is bounded. Given a bounded Borel (k + 1)-form 7,
on J/, we write, in U;, n(x) = a;(x, t) dxx} Ao A dxxf.‘ A dt, and naturally set

//,%J? = Z /X/,x](éi o @;) (aj o ;).

This definition is correct, consistent with the case of smooth manifolds, and the
analogue of Lemma 3.19 holds, i.e., when F: ./# — ./ is Lipschitz and A is a (everywhere
defined) bounded Borel (k + 1)-form on ./, we have

[ra=3 [ oppEoqya 0 (3:39)
/% T Jvixg

Remark 3.21. For further use, we note the following identity. Consider the setting in
Remark 3.20 and assume that I is bounded. Let ¢: W; — W; be as in Lemma 3.7, and set
(v, t) = (p(@©),t),Yv € W;, ¥Vt € R. Let w be a (everywhere defined) bounded Borel
k-form on /. Let f: V; X ] — R be a bounded Borel function supported in W; X J. Let
g: Vix ] — R, respectively G: V; X ] — &/, be Lipschitz maps. Then

fdgANGw = / fop(d(go@) A(Gop)w. (3-40)
Vix] Vix]

Formula (3.40) is obtained by repeating the proof of (3.32) and using the exterior
differential calculus rules for Lipschitz maps (see, e.g., the proof of (3.37)). O

We next extend the definition of f o to WUk maps. Clearly, the definition of
WP () adapted to our setting is the following: a map f: .# — R belongs to W7 ()
whenever f o ¢; € W (V;) for every i. The next definition is also natural.

Definition 3.22. For almost every regular point x = @;(v) € /4, we let

dxf: Ty — R, dxf(quoi(é)) = Dv(f © (Pz)(é)/ Vée R*. (3-41)
Similarly when f: ./# — R".

It is obvious, by the chain rule, that the above definitions do not depend on the choice
of the chart.

Remark 3.23. We present a counterpart of Remark 3.8 adapted to Sobolev maps. Let 4
be a C!-submanifold of R” and V be an open subset of R¥. Assume that g € Wli)cl(V ;R™)
is such that ¢(V) ¢ /#. We claim that, fora.e.v € V, D, g(]Rk) C Ty(v)¥- To prove this,
one may rely, e.g., on the following argument. Let (g;) € C*(V;RR") converge to g in
Wli’cl (V). Up to extraction of a subsequence, we may further assume that ¢; — ¢ and
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Dg; — Dg almost everywhere. Let Il be as in Definition 2.10, and let Il € C®(R";R")
be such that

TI(z) = T(z), V z € o

By the chain rule, the map Mo gj belongs to WLP(V;R"), and satisfies
Dy (T © 8j)(€) = Dy;()T 1D gj(£)), Vv € V, V& € R,

When j — oo, we have
Dy(IT 0 gj)(£) = Do)l 1(Dyg(£)) € Ty(o) N, forae.v € V, V& € R,

where we have used the fact that IT = IT near /.

On the other hand, by the continuity of the superposition operator, and up to a further
extraction, we may assume that

D, (T gj)(&) — Dy(ITo g)(&) = Dyg(£), forae.v € V, V& € RE,

which shows our claim. O
We endow WP () with the naturalnorm f + Y, || fop; llwir(v,)- Itis straightforward
that two different chart structures yield equivalent norms.
We can extend the definition of f*w (see Definition 3.11) and Lemma 3.19 to the case

where f € WYV (ul; ).

Definition 3.24. Let /' be a C!-submanifold of R". Let w be a p-form on .4 (defined
everywhere) and f € Wli’cl (; /). For almost every regular point x = @;(v) € M, we
let

o)y, ..., yp) = o(f(x)(dxf (1), ..., dxf Wp), Yy1,...,yp € oM. (3-42)

We note that the above definition is consistent with Definition 3.11 (which involves
Lipschitz maps), and does not depend on i.

Similar to (3.20), one can define, using (3.42), for a.e. regular point x = ¢;(v) € 4,

(fopi)w@) (&, ..., Ep) = w(f(X))(Dolf 0 i)(&1), .., Dolf 0 @i)(Ep)),
Vér,..., & eRA
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Then we have the analogue of (3.21),
(@) (ffw)=(f o pi)'w Hr-ae. onV;.

Lemma 3.25. For f € WYk(; /) and w a (everywhere defined) bounded Borel k-form on ¥,
we have

/ﬂf*“) = Z‘/Vi(& o) (f o pi)w.

Lemma 13.25 is obtained by repeating the proof of Lemma 3.19.

3.6 An adapted Stokes’ formula

Throughout this section: (a) ./ is a compact k-dimensional Lipschitz manifold ori-
ented by a finite chart structure {(U;, Vi, @i)}ier; (b) ] = (a, b) is a bounded interval; (c)
A is a closed manifold; (d) w is a smooth k-form on /. We state and prove a formula in
the spirit of the Stokes formula on ./Z X J. (See Remark 3.20 for the integration on ./Z X J.)
For the sake of concision, givenamap F: X XY — Z and y € Y, we write F, := F(-, y).

Proposition 3.26. Let F: # X [a,b] — W be a Lipschitz map. Then

F(dw)= [ (F)w - [ (Fa)'w. (3-43)

Similarly, if F: M X [a,b] — R" is a Lipschitz map and « is a smooth k-form on R" with
bounded coefficients, then

//%X(a,b)F*(dOf)=//%(Fb)*a—/%(Fa)*a. (3.44)

When both .# and F are smooth, (3.43) is a special case of the Stokes formula on
M X (a,b).

Proof. We only prove (3.43), since (3.44) follows from a similar argument. In particular,
one readily checks that all the ingredients involved in the proof of (3.43) below have
a valid counterpart when F is R” and a is a smooth k-form on R" with bounded
coefficients.

Let (&;) be a partition of unity subordinated to the finite chart structure {(U;, Vi, @i) }ier
on /. With | := (a, b), we use the notation in (3.38).
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By Lemma 3.19, we have
'@®nh[ow{ZL@ow@oww—fom@wN@m
}] | (Eopl(Fo gl (345)

—El/@m@HGOQH

We extend &; o ¢; and F o @; to Lipschitz maps G; and H; defined on V; X R by letting

Fogi(v,t), ifa<t<b
Gi(v,t) := & o @i(v), respectively Hi(v,t) := {F o ¢;(v,a), ift<a
Fo@i(v,b), ift>b

We next consider open neighborhoods W; of the support of &; o ¢; such that W; c V.
Finally, we set G; . = G; * p. and H; . := H; * p,, where p is a standard mollifier in
R**! and ¢ > 0is chosen sufficiently small so that: (i) G; . and H; . are well-defined and
smooth in W; X R; (ii) G; ¢ are supported in W; x R.

Itisreadily seen that: (j) G; . — G;and H; . — H; uniformly as ¢ — 0; (jj) D+ Gi,e —
D(,»Gi and D, )H; ¢ — Dy +H; for almost every (v, t) as ¢ — 0; (jjj) for any ¢ ¢ [a, b],
DyH; ¢(-,t) — DyH;(:,t) for almost every v as ¢ — 0; (jjjj) Gi,e, Hi e, DGj ¢, and DH; .
are uniformly bounded, independently of ¢, on W; x R.

Fix c < a < b < d. Using: (i) the fact that &; o ¢; is compactly supported in W;; (ii) the
fact that G; . does not depend on ¢; (iii) the divergence theorem for smooth forms; (iv)
the exterior product rules, we find that

/i Gie[(Hie)ilw - -/,- Gie - [(Hio)J @

=/' d[Gi - (Hi) o]
Wix(c,d)

(3-46)
=/' [(dGi.0) A (HioY'@ + Gi - d(Hie) )]
Wix(c,d)

:/' [(dGie) A (Hie)'w + Gie - (Hyo)'(dw)].
Wix(c,d)

Letting ¢ — 0 in (3.46) and using (j)—(jjjj) above to justify the use of the dominated
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convergence theorem, we find

/W Gi-liHaT - / Gi  [(Hy)eJ'w

Wi

(3-47)
- [ 166 A0+ Gir () (o
Wix(c,d)
Then, we observe that, by construction of G; and H;, we have
/W Gi - [(Hy)al'w - / Gi - [(Hy)eT'w (3.48)
- [ Gitttnro- [ ctaTe.
w; w;

Letting ¢ — a and d — b in (3.47), summing over i, and using: (i) (3.48); (ii) (3.45);
(iii) the fact that &; o ¢; is compactly supported in W;, we deduce that

/ﬂ (B - /ﬂ (Fafw = Z /V G A G0 G HY L (a9

From (3.49), (3.39) (with A := dw), and the fact that, on V; x (4, b), we have G; = &; o @;
and H; = F o ¢;, we find that (3.43) holds provided we have the identity

Y[ @eepnaEegyo=o (350)
i ,‘X(ﬂ,b)
that we next prove. Let S denote the sum in (3.50). Since }; jéj=lonJ, we have

s=> [ L, EiopidE e o) AFop e (351)
ij iX(a,

We next apply to the integrals in (3.51) the identity (3.40) (with f(v,t) = & o i(v),
g(v,t) =& o @i(v), G == F o ;) and obtain

5= Z/ &joj(d(&io @) A(Fo@j)w,

i Vix(a,b)
where we have used the fact that ¢;(¢(v)) = ¢;(v), Vv € W;. Finally, since }; iop; =1,

Vj, we have };d(&; o ¢j) = 0 ae.in V; X (a,b), Vj. Therefore, S = 0, and thus (3.50)
holds, as claimed. 0
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3.7 Integral invariants for VMO(.Z; ./") maps

Throughout this section: (a) ./ is a compact k-dimensional Lipschitz manifold ori-
ented by a finite chart structure {(U;, Vi, ¢i)}ier; (b) / is a closed manifold; (c) w is a
smooth closed k-form on /. We prove that @ induces a homotopical invariant / L
on VMO(A; ).

We first investigate the case of Lipschitz maps. Let 6 = (/) be as is Definition 2.10.

Proposition 3.27. Consider two Lipschitz maps f, g: M — N such that ||f — glle < 6/2.
Then

Proof. We have tg(x) + (1 —t)f(x) € N5, Vx € M, Vt € [0,1]. Therefore, the map
F(x,t) =TI(tg+(1—t)f), x € M, t € [0,1], with IT as in Definition 2.10, is well-defined
and Lipschitz. Moreover, we have F1 = ¢ and Fo = f. (Recall the notation F := F(-, y).)
Hence, we are in position to apply Proposition 3.26, which yields

//ﬂg*w—/ﬂf*a)=//%(F1)*w—//%(Fo)*w://%X(Oll)F*(da)):O. O

Corollary 3.28. For f € C(M; W), set I(f) = Iu,0(f) = f/% g*w, where g € Lip(M; W)
is such that || f — g|lee < 0/4. Then the definition is correct (i.e., it does not depend on g) and
J(f) is a homotopical invariant.

(The existence of such g is straightforward, since . is a compact subset of R". On the
other hand, if f happens to be Lipschitz, then .7(f) coincides with f S0

Corollary 3.29. For f € VMO(AM; ), set F(f) = F(f¢) for € < &1, with € as in (2.31).
Then the definition is correct (i.e., it does not depend on €) and 7 (f) is a homotopical invariant
and locally constant.

Moreover, the definition of 7 (f) is consistent with the one in Corollary 3.28.

Proof. Combine the discussions preceding and following Definition 2.11 with the pre-
vious corollary. |

Remark 3.30. In the special case where .# and f are C!, # = $F, and w = wg is the
standard volume form

k+1 -
Wk = Z(—l)]_ldxf,

=1
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we have
/ frwg = |S*| deg f,
WA

and thus / o/ sk 18, up to a constant, the Brouwer degree of the map f, as explored
notably in the monograph [30] by Dinca and Mawhin.

In this special case, Corollary 3.29 implies in particular that the Brouwer degree,
initially defined for C! maps, can be extended to VMO(.#; S¥). This fact is already
contained in Brezis and Nirenberg [24]. O

Remark 3.31. If f is Lipschitz, then f ', /@ makes sense, as an integral, for every smooth
k-form w, not necessarily closed. However, Proposition 3.26 suggests that the closedness
assumption is necessary to make this quantity a homotopical invariant. On the other
hand, if f is merely VMO, then the assumption that w is closed is required even to define

F(f). 0

The following corollary asserts that the integral invariant we have just defined is stable
under composition with orientation preserving bi-Lipschitz transformations.

Corollary 3.32. Let 4 bea Lipschitz manifold and V' M — M be a bi-Lipschitz orientation
preserving map. For f € VMO(AM; V'), we have

Fawf) =T o (f 0 ).

Proof. This is clear if f is Lipschitz (by the chain rule and Lemma 3.19). The case where
f is continuous follows by approximation, via Corollary 3.28.

For a “general” map f € VMO(; /'), by Corollary 3.29 we have, for small ¢,
Fawlf) = Taolf) = T, (f oW) =75 (o f, o W),

By Corollary 2.6 and Lemma 2.7, we have f. — f in BMO N &1, It is then straight-
forward that f; o W — f o W in BMO N ! (since W is bi-Lipschitz). In particular, we
have f o W € VMO (see the definition (2.7) of VMO). Next, we use the fact that the
superposition with Lipschitz functions is continuous in VMO (see Brezis and Nirenberg
[24, Lemma A.8]) to deduce that

[Mof.oW —TlofoW=foWin BMONZ. (3.52)

We complete the proof by combining (3.52) with Corollary 3.29. m]

Combining Corollary 3.29 with Proposition 2.15, we obtain the following result.



Corollary 3.33. There exists some finite positive constant C = C(M , V') such that
[f € VMO(4; /), |flsmo < C] = J(f) =0.

For pedagogical reasons, we postpone the study of further properties of f*w and .7 (f)
to Section 5; see, in particular, Sections 5.1 and 5.2.

3.8 The case of W'X(.«; /) maps

Recall the embedding
WYk (a) — (VMO N Y (). (3-53)

Indeed, this is well-known when . is smooth. In order to prove (3.53) in the Lips-
chitz case, it suffices to repeat the argument in Brezis and Nirenberg [24, Example 1].
Consequently, when w is closed, the invariant .#(f) makes sense (see Corollary 3.29)
and it is viewed as an extension of f Y f*w. However, we have at hand another natural
definition of f o[ @ as the integral of an Z ! function defined a.e. (see Lemma 3.25).
Let us note that f ', /@ makes sense even if w is not closed. The following proposition
shows that, for f € WYk(tt; /) and @ a smooth closed k-form, the two definitions yield
the same quantity.

Proposition 3.34. Let f € WYS(.t; /) and w a smooth closed k-form. Then we have

I(f) = /ﬂ frw. (3.54)

Proof. The identity (3.54) is obtained via: (i) Lemma 3.35 below; (ii) the fact that f; — f
in WYk (; ) implies f y f].*a) — f ' /7 w; (iii) the embedding (3.53); (iv) Corollary 2.13;
(v) Corollary 3.29. O

Lemma 3.35. The space Lip(; V') is dense in WYk (t; ).

Proof. We let (U;, Vi, i), Kz be as in Sections 3.1 and 3.5. Let ¢1 = €1(#) > 0 be such
that the open sets

U/ = {x € Ui: B, (i)' (x)) € Vi} = pi({v € Vi dist (v, (Vi)) > e1}) (3-55)

cover .
For f € M (M;R") and v € V;, set f,(v) = f o ¢i(v).
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Consider a Lipschitz partition of unity (&;)ier subordinated to the cover (LI; )ier of M.
Letp e C?’(Bk) be a mollifier. For 0 < ¢ < &1 and x € A, set

fre=&l(Fixpe)o @) and o= ) ;. (356)

(with the natural convention that ?i, x) = 0if x ¢ U). Clearly ?i, . is Lipschitz, and

thus so is ]_CE.

Step 1. We have ]_(é, — fin WVK() as ¢ — 0. In order to see this, it suffices to prove
that J_Ci,s — &if in WYK(). Clearly, we have

?i,g opi=(Eio@)(fi*pe) = (Eio@i) f; =(Eio @) (fog)in W Vi), (3.57)

Combining (3.57) with the fact that (pi‘l o @, is bi-Lipschitz, we obtain that 71‘, cOPi—
(Eio@j)(fogp))in Wl'k(Vj), and therefore ]_[i,s — &if in WYk().

Step 2. We have dist (?e(x), ) — 0 uniformly as ¢ — 0. Indeed, starting from the
identity }; &i(x)f(y) = f(y) and using (3.53), we find that

= Z &it¥) )|[J7i A R (CHRENEEA (358)
< CMk,e(f).

Step 3. We have I o 17&, — fin WYk(u; /) as ¢ — 0. Indeed, by the previous steps,
for sufficiently small ¢, ITo 7 . is well-defined and Lipschitz. By a standard property of
superposition operators in W', we have IT o 7&, —TIlo f=fin WHk(#; /) as e — 0.
This completes the proof. O

Remark 3.36. For the record, we note that a variant of the proof of Lemma 3.35 leads to
the the following result, that we will not use and whose detailed proof is presented in
Appendix B. m]

Lemma 3.37. Assume that 0 < s < land 1 < p < oo are such that sp > k. Then the space
Lip(A; W) is dense in WP (M; N).

In the above, when 0 < s < 1, one naturally defines W*?(.#) as {f: M — R:|f|wsr <
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oo}, where

[ VO FOP
e //%//% dist (x, )<+ 7 () AT (y).

4 Estimate of .7(f)

Throughout this section: (a) ./ is a compact k-dimensional Lipschitz manifold ori-
ented by a finite chart structure {(U;, Vi, ¢i)}ier; (b) / is a closed manifold; (c) w is a
smooth closed k-form on /. We establish an analytical estimate on the integral invariants
that we constructed in Section 3.7.

We have
WP(M) — VMO(M), when (0 <s <1,1 <p < o0, and sp = k. (4.1)

(To see this, it suffices to repeat the argument in Brezis and Nirenberg [24, Example 2,
Case 2] and to rely on (3.4).)

From now on, we assume that 0 < s < 1 and sp = k (and thus the embedding in (4.1)
holds). For f € WP (/; /), our purpose here is to control |7 (f)| (defined in Corollary
3.29) by |f|ws». This significantly generalizes the corresponding result in Bourgain,
Brezis, and Mironescu [11]. (There, # = Sk o = 8§k and w is the standard volume
form on $¥.) The main result of this section is the following.

Theorem 4.1. There exists a finite constant C = C(M, V', w, s, p) such that

[T < Clf lyysp, ¥ f € WP (ll; ). (4-2)

When f is continuous and /4 = $*  Theorem 4.1 was already contained in Van
Schaftingen [63, Theorem 6.1].

Remark 4.2. For a refinement of the estimate (4.2), see Appendix B. O

Proof of Theorem 4.1. In view of Corollary 3.33, it suffices to prove, instead of (4.2), the
following seemingly weaker estimate

[T < CUflyep + 1),V f € WL ). (4-3)
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In what follows, we fix a map f € WP(M; V). Let, as in (2.9),

F(x,6) = fo(x) = K(x, €) / o(x, &, ) f(y) A (1)

- (4-4)

_ / 5(x, &, y)f () A (y), Vx € ANV e > 0,
M

where we have set
plx, e,y) = K(x, e)p(x, &,y),Vx,y € M,V & > 0. (4-5)

(The relevance of considering F in the setting of Theorem 4.1 comes from Corollary 3.29
and the definition (2.32).) Let us note that F makes sense when f: /# — ./ is merely a
measurable map.

The next result, whose proof is postponed, collects some straightforward properties
of p. Since it does not rely on .# being a Lipschitz manifold, it is stated in the more
general setting of Section 2.

Lemma 4.3. Assume that M is a compact doubling metric measure space. Then we have

/ p(x,e,y)du(y) =1, Vx e M, Ve >0, (4.6)
M
lp(x, e, y) —p(x’, €', y)| < Cglx,x", ¢, &, y)le — €| +dist(x, x")], @)
Vx,x',yed Ve & >0, '
with C == 2C_y + 4(C_4)? and
7(x’! B U BS’ ! (X
o, e, y) = LBV )(y)  p(Be(x) U Ber (X)) XB. (1) (¥) 48)

&' u(Be(x’)) ' 1(Be(x))u(Ber (x7))
Moreover, we have (with the same C)
_ -, 4C , . ,
/ lp(x, &, y) = p(x', &, y)| du(y) £ ————[le - €'| + dist (x, x')],
WA min

(e,€) (4.9)
Vx,x' el Ve, & >N0.

Granted Lemma 4.3, we proceed to the proof of Theorem 4.1.
Step 1. There exists some finite constant C; = Cy(.#, /') such that

U e~ ¢+ dist(x, 1)),
min(¢, ¢’) (4.10)

Vx,x' el Ne &€ >0Nf:ll — N

|F(x,e)—F(x', &")| <
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Indeed, we have, by Lemma 4.3,

F(x, &)~ F(, )] < /ﬂ e, €, y) - PO, €, PILF W) A ()

4C

< ——[|le = &| +dist(x, x")| max|z
e lle - ¢/ dist (x, )] maxiz,

whence (4.10).

We next define an “almost projection” on .#". For this purpose, we consider IT as in
Definition 2.10 and let I'T € CZ°(R"; R") be such that

ﬁ(z) =1l(z), Yz € H5),. (4.11)
Set
F:=TIoF. (4.12)

It is important to note the following. Let &1 be such that, for ¢ < ¢, we have
fe(x) € Nspo, ¥V x € M (see (2.31)). Then

F. = fe&,Ve<e (4.13)

(see (2.32)).
Combining (4.13) and Corollary 3.29, we find that

F(f) = T(F) = /ﬂ (Fw= /ﬂ (Forw, Ve < e, (4:14)

The following is a straightforward consequence of Step 1 and of the properties of 1.
Step 2. There exists some finite constant C; = Co(A4, N, ﬁ) such that

,C—z,[|e — ¢&'| + dist(x, x)],
min(e, ¢’) (4.15)

Vx,x'el,Ne, & >0Nf: Ml — N

|F(x, e)— F(x', &')| <

(In particular, F, ¢ is Lipschitz, Ve > 0. Therefore, when ¢ < ¢1, the right-hand side of
(4.14) is a standard integral of a bounded Borel function.)

We next define a convenient extension of w. Since IT takes its values in .# on N5 2, the
form IT*w is well-defined on ./ /2. (Recall that .#° C R".) Now, let ip: R" — [0,1] be a
smooth function, compactly supported in .5/, and such that ¢ = 1 on a neighborhood

41



of /. We may therefore set

a=ylTo, (4.16)
and this definition makes sense on the whole R”. We claim that

a is a smooth extension of w to R". (4.17)

Indeed, on // we have Il=1d. Therefore, for any z € #/ and any ey, ..., ex € T/, it
holds

a(z)er, ..., ex) = P(I(2) o 1(2)(D:I1(er), . . ., D:T(ex)) = w(z)(ex, .. ., ex); (4.18)

this proves the claim.

As a consequence of (4.17) and (4.13), we find that

(Foya=(fw Ve < e (4.19)

We next combine (4.19), (4.14), (4.15) (which, in particular, implies that Fis Lipschitz
on / x[e,b],V0 < &€ <b < o), and Proposition 3.26, and find that

J(f) = / (Fp)a —/ F*(da), Ve < e, Ve <b < . (4.20)
M MX(g,b)

After these preliminaries, we are at the heart of the proof of Theorem 4.1 (Steps 3-5).
It will be of interest to note, for each step, the assumptions on s and p. (The assumptions
0 <s <1and sp = k are a common roof to all these steps.)

In what follows, C; denotes a finite constant depending only on ., ./, II,s,p,and w.

Set
h(x) = inf{e > 0:dist (F(x, €), /) = 6/2}. (4.21)

Step 3. If f: M — N, we have

- 1 )
//% x(o,oo)|F (da)l < Cs /ﬂ T dak(x), (4.22)
lim (fb)*a =0. (423)
b—oo J 4
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In particular (in view of (4.20)), when sp = k we have

|JUNSC%[;Eéﬁ§d%W@o (4:24)

We next proceed to the proof of (4.23). By (4.15), we have

|Dxfg| < % for #*-ae.x e M, Ve >0,

and thus

‘/ﬂ(fb)*a

whence (4.23).

Cs
< b—k,Vb > 0,

It remains to prove (4.22). For this purpose, we first note that, when z € /" and
e1,...,ex+1 € T/, we have (similarly to the proof of (4.18))

da)(z)(er, - - ., k1) = (AT w))(z)(e1, - - ., exs1)

= (dw)([1(2))(D:I1(e1), . . ., D:II(exs1)) = 0. (4.25)

Here, we use the fact that the differential commutes with the pullback, along with the
fact that ¢ = 1 on a neighborhood of /.

Consider next the set
W ={(x,¢) € M x(0,c0):dist (F(x, ), V) < 0/2},

which is open (recall that F is continuous). Using: (i) (4.25); (ii) the fact that Fis locally
Lipschitz; (iii) the fact that (by definition of W) we have F(W) C ./, we find that

F*(da)=0a.e.in W. (4.26)

Combining (4.26) with the definition (4.21) of h(x), we find that

r = = NEPET 7
//%X(O,w)u: (da)| —//%/h(x)lF (da)(x, e)| de dZ " (x). (4.27)

On the other hand, using (4.15), we find that
T Co
|F*(da)(x, )] < — 7 forae. (x,€) € M x(0,00). (4.28)
€

Inserting (4.28) into (4.27), we obtain (4.22).
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Before proceeding further, let us note that the function / defined in (4.21) is measur-
able. Indeed, by (2.30), we know that h(x), x € ./, has a uniform lower bound ¢ > 0.
Therefore, for each x € /4 we have dist (F(x, h(x)), /) = 0/2,and dist (F(x, €), /') < 0/2
if 0 < € < h(x). Using this fact, it is straightforward that & is l.s.c.,, and thus Borel

measurable.

Step 4. For0 <s <land1<p < oo, wehave,Vf € WP (M;N),

W < Cy /0 eP1=9719,F(x, ¢)|P de for #*-a.e.x € M. (4.29)

In the proof of (4.29), it suffices to consider points x € . such that: (i) x is a
Lebesgue point for f (and thus F(x,e) — f(x) as ¢ — 0); (ii) h(x) < oo (and thus
dist (F(x, h(x)), /) = 6/2). (For (i), we rely on the Lebesgue differentiation theorem for
metric measure spaces satisfying the doubling condition; see, e.g., [33, Theorem 2.9.8].)
We also note that (iii) F(x, -) is locally absolutely continuous. (This relies on the locally
Lipschitz character of F, which does not require that sp = k; see Step 1.) For such x, we
have (using (i) and (ii))

limF(x, (x)) = F(x, )| = [F(x, h) - £(x)]

(4.30)
> dist (F(x, h(x)), /) = 6/2.
From (4.30), we deduce (using (iii)) that
h(x)
/ |0eF(x, €)|de > 0/2. (4.31)
0

Combining (4.31) with Holder’s inequality, we obtain

p

h(x)
(6/2)F < (/0 |85P(X,8)|d£)

h(x) h(x) p
< / eP1=9)71 9. F(x, ¢)|P ds(/ espl/(p=1)-1 ds)
0 0

po 1\ )
- () e [ e o, e ac
0

-1

(with the obvious modification when p = 1), whence (4.29).
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Step5. When0 <s <land1<p < oo, wehave,Vf € WP (M;R"),

[ ] etk o dedwt o < il + Co. (432)
M J0

(This is well-known (with Co = 0) in the Euclidean case, see, e.g., the account of the
theory of weighted Sobolev spaces in [50].)

The starting point in the proof of (4.32) is the following. Using (4.6)—(4.8), we find
that, for x € # and —¢/2 < h < ¢, we have

_ ‘/ plx, e+ h,y}z - p(x, e,y)f(y) d%k(y)‘
M

B / plx,e+h,y)—plx, e y)
-1/ :

F(x,e+h)—F(x,¢)
h

(f(y) = f(x)) d%’k(y)‘ (4-33)

<99 L ) - )l dr ().

€ J B
Combining (4.33) with (3.4), we find that, for some appropriate ro > 0, we have

Cn
€k+1

|0:F(x, €)| < / If(x) = f(y)|dZ*(y),Vx € M, forae. 0 < e <ry. (4.34)
Boe(x)

Using (4.34), (3.4), and Holder’s inequality, we find that

0.F(x, )P < S22 /B = fr ),

ekt (4.35)
Vxe, forae. 0<e <.
On the other hand, (4.33) yields
Ci3
|0:F(x, €)| < —~ Vx € JM,forae. > r. (4.36)

Using (4.35) and (4.36), we obtain

/ / P11 9. F(x, )P de dZ¥(x)

M JO

sco [ [etort [ 5w -l ) dedsrt o + i
M IO B2é'(x)

< Cpp / / / eF 5P £ (w) = F(y)|P de dZ*(y) A ¥ (x) + Cuq
MM dist(x,y) /2
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Y@= FOF e o
=G ./ / [dist (x, v)] k+SP d7*(y) dZ " (x) + C1a = lelws/p + C14.

Estimate (4.3) (and thus Theorem 4.1) follows from Steps 3-5. We note that the only
place where we use the assumption sp = k in the proof is to connect Steps 3 and 4
through (4.24). O

Proof of Lemma 4.3. By definition of K (see (2.8)), (4.6) is obvious.

We now proceed to the proof of (4.7). Set B := B.(x) and B’ := Bu(x’). By (2.8), we
have

lp(x, e, y) — p(x', &, y)| < |e — & —dist(x,y) + dist(x", y)| xpup (y)

L , (4.37)
< [le = €'[ + dist (x, x") | xpup (y)-
On the other hand, (2.8), (4.37), and (2.12) yield
[K(x, €) = K(x", &")] < K(x, e)K(x’, e’)/ lp(x, &, y) = p(x’, €', y)| du(y)
(4.38)

u) u(BUB')

< M) B

[le = &'| + dist (x, x)].

Combining (4.37) and (4.38) with (2.10) and (2.12), we find that

|§(.’Xf, g, y) - ﬁ(x,/ g’, y)|
<|p(x,e,y)—px’, &, y)|K(x', &)+ p(x, e, y)|K(x, e) = K(x', &’)]
XBUB’(y) zu(B U B’ )xs(y)

- (ZC” eu®) B ®)

whence (4.7) with g as in (4.8).

[le = &'| + dist(x, x")],

Finally, we prove (4.9). Without loss of generality, we may assume that u(B) < u(B’).
Integrating (4.7) in y and using (4.8), we find that

/ 5(x, e, y) = P, ¢, y)l duly) < C “(, B0l - e/l + dist (x, %]
u u(B’)

4u(B’)
C S’[J(BI)

[le = &'| + dist(x, x)],

whence (4.9). O

Remark 4.4. Let0 <s <land 1 < p < oo be such that sp = k. Let w be a smooth closed
k-form on /. Combining (4.20), (4.22), (4.23), (4.29) and (4.32), we have the following
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explicit formula:
J(f) = _/ F(da),V f € W™ (t; ). 0 (439)
M %(0,00)

5 Additional properties of f*w

Throughout this section: (a) ./ is a compact k-dimensional Lipschitz manifold ori-
ented by a finite chart structure {(U;, Vi, ¢i)}ier; (b) / is a closed manifold; (c) w is a
smooth closed k-form on /.

5.1 An explicit formula for .7 (f) when f € VMO

As a continuation of our excursion into the land of Sobolev maps, we prove that (4.39)
still holds for VMO maps.

Proposition 5.1. Let o be a smooth compactly supported extension of w to R". Let f €
VMO(AM; ). Let F, respectively F, be as in (4.4), respectively (4.12). Then

F(f) = - /ﬂ o Fa (5.1)

Proof. An inspection of the proof of Theorem 4.1 shows that the specific extension a of
@ we take plays no role in the proof, and thus (4.39) holds for any such a. Moreover,
(4.39) holds for any f € Lip(.; V).

Letnow f € VMO(A; /). Let 1 be as in (2.31). Using: (i) Corollary 3.29; (ii) the fact
that f¢ is Lipschitz when 0 < ¢ < &1 (see Step 1 in the proof of Theorem 4.1); (iii) the
proof of Theorem 4.1, we find that

7 == [ re=- [ L Faavo<esa 52)

In order to obtain (5.1) from (5.2), it suffices to prove that F*(da) is integrable on
M % (0, 00). For this purpose, we note that, clearly, the number /(x) introduced in (4.21)
satisfies

hix) > e,Vx e M. (5-3)

Combining (5.3) with (4.26) and (4.28), we obtain, with some finite constant C, the
domination

- C
|F*(da)(x, )] < W}((SLW)(E) fora.e. (x,¢€) € M x (0, ),
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which implies the integrability of F*(da) on . x (0, o). O

Remark 5.2. There is a lot of freedom in the choice of the extension F yielding F. For
example, one can prove that (5.1) still holds for F defined as in Lemma 5.8 below. O

5.2 Action on the de Rham cohomology classes

An immediate consequence of Proposition 5.1 is the following.

Corollary 5.3. If w is exact, then
J(f)=0,Vf e VMO(L; ).

Proof. Let  be a (k — 1)-form such that dn = w. With the notation after Step 2 in the
proof of Theorem 4.1, set a := d(yIT*n). Since i = 1 in an open neighborhood Y of ¥,
we have, in Y,

a=yd(In) =yII'dy) =¢Tw,

and thus (4.17) holds.
Using (5.1) and the definition of a, we find that

I(f) = - / F'(da) = - / F/(d2(yIT'n) = 0,Y f € VMO(; /). D
M %(0,00) M (0,00)

Combining Corollary 3.29 and Corollary 5.3, we obtain the following

Corollary 5.4. The quantity 7(f), with f € VMO(AM; V'), depends only on the homotopy
class of f and the (de Rham) cohomology class of w.

Remark 5.5. In the special case where .#* = $, the de Rham cohomology group H gR(Sk)
satisfies H gR(Sk ) = R and is generated by the standard volume form wgr on $¥, whose
expression has been recalled in Example 3.30. Therefore, the information given by all the

homotopical invariants .4, (f) is entirely contained in the single invariant .7.z,q (f).

If, moreover, ./ is C!, connected, and closed, then actually the invariant .7, Mg (f)
completely characterizes homotopy classes of maps f: # — S, that is, if .7, g (f) =
It g (g), then f ~ ¢. When f and g are is continuous, this is Hopf’s theorem, see,
e.g., Milnor [48, § 7]. The case of VMO maps follows from the general theory developed
above. When . = S, this characterization is a special case of Proposition A.2, which
features a more general criterion on /4 for the invariants .# to characterize homotopy
classes of .#/-valued maps, and will be discussed more thoroughly in Appendix A. O
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5.3 A digression: the distribution f*w

This section is in the spirit of Brezis and Nguyen [23]. When f: ./# — ./ is Lipschitz,
f*@ can be identified with a bounded Borel function (#*-a.e. defined on .#), and then
f [, /" is merely the integral of this function with respect to # k. Therefore, if £ is a
real Borel integrable “test” function on ., then one may consider the integral [ &
(Similar considerations apply to the case where f € WVK(.#; ) and & is bounded; see
Section 3.8.) We discuss here the possibility of giving a robust meaning to the latter
integral, possibly under more restrictive assumptions on £. This is a generalization of the
case where # = # = §¥ and w is the standard volume form on $¥, investigated in Brezis
and Nguyen [23]. (However, strictly speaking the results below are not generalizations
of the results in [23].) Our purpose here is to illustrate how the ideas used in the proof
of Theorem 4.1 can be adapted to this context, and also to provide heuristics for Section
6. The results we present below are otherwise off topic, and therefore the proofs are
rather sketchy.

For simplicity, in addition to the assumptions (a)—(c) at the beginning of Section 5, we make
here the extra assumption (d) M is connected. Also, in order to slightly simplify the statement
of Lemma 5.8 below, we make the assumption (e) the constant Ky in (3.1) equals 1. (The latter
assumption can be achieved by a scale change.)

Remark 5.6. A preliminary observation is that, even in the smooth case, f [y € [ w is not
a homotopical invariant. To illustrate this assertion, assume, e.g., that # = .,/ contains
a flat ball, that we identify with B¥, the unit ball in R*. Consider a k-form w that
coincides, on B¥, with the standard volume form. Let & € CX(BX;[0,1]) \ {0}. If £,
g € C®(u;BF), then clearly f and g are homotopic. Choose now f := 1 Id, where
Y € CX(B¥) and ¥ = 1 on supp &, and g := 0. By the above, f and g are homotopic.
However, we have

/5f*a)=/€>0,
a a

while f/” Egw=0. O

We next present two results in the spirit of Theorem 4.1. We start with the easier case
where k > 2.

Theorem 5.7. Assume k > 2. Let 0 < s < land1 < p < oo be such that sp = k. Let
& € Lip(;R). Then the mapping

Lip(%;/V)BfH/ﬂéf*a)
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can be extended by density to (Ws? n WI=VERYa; ).
The extension, still denoted f / P & f*w, satisfies

[ere

for some finite constants C1 and C; independent of f and &.

k
< Cil e lElleo + Cal 151 el ElLips

Vfe (WP nWIVERy G, 1),V & € Lip(u;R),

(5-4)

We note the extra assumption f € wi-1/ k'k(./% ; /), which was not needed in Theo-
rem 4.1.

Sketch of proof. Let us start by guessing the analogue of (4.39) in this context. We use
notation similar to the one in the proof of Theorem 4.1. Let F be an extension of f to be
defined later and set F := 1o F. Set &(x, ¢) = &(x), Vx € M, Ve > 0. With (4.23) in
mind, we formally have the following chain of equalities:

/ £fw=- / d[EFa] = - / dE AFa- / EF(da). (5.5)
M M (0,00) M x(0,00) M x(0,00)

The strategy of the rigorous proof of (5.5) is now clear; see Steps 1-5 below.

Step 1. Definition of an appropriate extension operator f + F. This is the content of
the following auxiliary result, inspired by the proof of Lemma 3.35. We consider the
notation in (3.55)—(3.56).

Lemma 5.8. Let f € L1 (M;R"). For0 < ¢ < &1 = e1(M) and x € M, set

F(x, €)= f (x) = Z &) [(F; * pe)(9i) M ()] (5-6)
For x € M and the other non-negative values of ¢, we set

fx), ife=0
F(x,¢) = f/ﬂf’ if e > 2¢&
(2—6%)1:(%61)+(§1—1)f%f, ife] < e<2e

The linear operator Z'(M;R") > f > F has the following properties (with finite constants
independent of f).

(1) If f is Lipschitz, then so is F.
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(2) For 1 < € < 2¢1, we have

d:F(x,¢) = gl( f —F(x, 61))
1

M

= z|[r=f, 1) oo ratero

1

and therefore

19.E(x, 6)] < Cs /ﬂ /ﬂ () = F2) d7 () A (2),

(5.7)
Vxe N e £<e<2e.
(3) For0 < ¢ < e and #*-a.e. x € M, we have
C4 k
I[VF(x, €)| < =71 ( )|f(]/)—f(x)|d% (). (5.8)

(4) If f: M — N, then, for every x € M and 0 < € < 1,

dist (F(x, €), /) < CsM,(f).

Sketch of proof. The proof of (1) follows readily from the fact that Lip N #* is an algebra.
The proof of (2) is a straightforward computation. Property (4) is proved in (3.58).

To prove (3), we calculate the gradient of F(x, ¢) via the Leibniz rule. For the term
involving V¢&;, we rely on the fact that }}; V&; = 0 a.e. to obtain that, for a.e. x € /, it
holds

‘Z[va(xn [+ pg)«q)i)-l(x))]‘ = ‘Z[va(x)][@ < p(9) (1) = F)]

1

<C fi(0) - d :
) Fro o, FO=FOld0 59

<G f F(y) - F(0) d*(v),
B:(x)

where we have used the extra assumption (e) in the last inequality.

For the term involving f; * Vp. (where V stands for the gradient in both x and ¢ of
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(x, €) — pe(x)), we rely on the fact that the integral of Vp, is zero to deduce that

i+ Vpo)(@) ' (x)) = /

Be((pi)~!(x)

) Voe((9i) 7! (x) = 0)(fi(0) - f(x)) do. (5.10)
We obtain (5.8) from (5.9) and (5.10) combined with: (i) the fact that (&;) is a partition
of unity; (ii) the fact that ¢; is bi-Lipschitz; (iii) the estimate |Vp.| < Cge=*~1. |

Step 2. Justification of (5.5) when f € Lip(.#; /). The starting point is the following
result.

Proposition 5.9. Let F: M X [a,b] = N and Z: M X [a,b] — R be Lipschitz maps. Then

/ dZ/\F*a)+/ ZF*(da)):/ Z (Fb)*a)—/ Za (Fa) .
Mx(a,b) Mx(a,b) M M

Similarly, if F: M X [a,b] — R" and Z: M X [a,b] — R are Lipschitz maps, and if « is a
smooth k-form on R"™ with bounded coefficients, then

/ dZ/\F*a+/ ZF*(da):/ Zp (Fb)*a—/ Z,(Fp)a.
Mx(a,b) Mx(a,b) M M

This is a cousin of Proposition 3.26, and its proof is a straightforward variant of the
one of Proposition 3.26.

By Lemma 5.8 (1), when f is Lipschitz, so is F (and thus f) We are therefore in
position to apply Proposition 5.9 to &, F, and a. Using (4.17) and the fact that, by
definition of F, F(x, ¢) is constant for x € ./ and ¢ > 2¢1, we find that

[ero=-[ — aiaFa-[ — TF@a
M MX(0,2¢€1) Mx(0,2¢1)

_ / dEAFa-— / TF(da).
ﬂX(O,OO) ‘%X(O/oo)

This completes Step 2.

Step 3. Justification of (5.4) when f € Lip(.; /). By (5.7), (5.8), and the definitions of F
and F, we have, for Z*-a.e. x € 4,

|Vf(x,€)| < Qf
& B,(

€

)If(y) — f()|dox (y) if0 < & < &, (5.11)
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V(01 < Cu [ 1700~ f)] a7 0)

/% (5.12)

+ cn/ / If(y) = f(2)| dZ (y) dF*(2) if €1 < € < 2¢,
M M

Vf(x, €)=0if e > 2¢;. (5.13)

Combining (5.11)—(5.13) with the proof of (4.32), we obtain the following estimate.

Lemma 5.10. Let 0 <r <1land1 < g < co. Then

1f) = fWl”
(1-r)-1 k ‘
//ﬂx(o o P IVE(x, )| < Cy / / dist(x) y)]k+m dxz*(y) dx " (x).

Applying Lemma 5.10 with 7 := 1 —1/k and g := k, we obtain the estimate

‘/ dg AFa
MX(0,00)

On the other hand, using Lemma 5.8 (4) and repeating the proofs of (4.22) and (4.29)

< Cl3|f|€\/1_1/k,k |€|Lip~ (514)

(proofs that are “robust” with respect to the definition of F), we find that

[ TFaascu [ atraEwopi. (5.15)
M x(0,00) M %(0,00)
From (5.15) and Lemma 5.10 with r := s and g := p, we obtain
’ [ TP < Culflyliell (516)
M %(0,00)

We complete Step 3 via (5.14) and (5.16).

Step 4. Continuity of the right-hand side of (5.5) in (W*? N WI=VEk)(a; #). We es-
sentially rely on the converse to the dominated convergence theorem. Consider f;,
f:l — N suchthat f; > fin WP N WITV/kK as j — oo,

There exists some maps G, H: # X # — [0, o] such that

G(x, y)I*
/ / % A7 (y) dr*(x) < oo, (5.17)
_HG, )P
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and, up to a subsequence,

fi(x) = i)l < G(x, y), (5.19)
Ifi(x) = fi(y)l < H(x, y). (5.20)

Let Fj, 1?] be the corresponding maps associated with f;. It is straightforward that, for
H*-a.e. x € M and every ¢ > 0, we have

VIE}(x, ¢) — VE(x, e). (5.21)

Combining dominated convergence with (5.17), (5.19), (5.21), (5.11)=(5.13), and the
proof of Lemma 5.10 with 7 := 1 —-1/k and g := k, we find that

/ dg/\ Fa— dg/\ f*a, V& e Lip(4; R). (5.22)
M %(0,00) ] M%(0,00)

On the other hand, with &; associated with f; asin (4.21), we have, by (4.26), the proof
of (4:29), and (5.11)~(5.13),

- C
|F]. (da)(x, ¢)| < Sk—ﬁx(hj(x)loo)(e), fora.e. x, ¢, (5.23)
1 < C17/OO eP1=9)-119. Fi(x, €)|F de, for #*-ae. x € 4. (5-24)
[hj(x)]P 0 M '

Combining dominated convergence with (5.23), (5.24), (5.18), (5.20), and the proof of
Lemma 5.10 with 7 := s and g := p, we find that

/ Ef]*-(da) - gf*(da), V&e P¥(M;R). (5.25)
M x(0,00) M X(0,00)

We complete Step 4 via (5.22) and (5.25).

Step 5. Density of Lip(.; /) in (W** N WI-VkKYa; ). Thanks to Lemma 5.8 (4) and
the embedding W*? < VMO, for small ¢, we have [loF (,e): M — . We also
have I o f = f. We complete Step 5 by combining the next two results. (The first one
is straightforward, and the second one is an easy consequence of the converse to the
dominated convergence theorem.)

Lemmas.11. Let0 <r <land1 < g < co. Let f € W"9(.M;R"). Let F be as in (5.6). Then
F(,e) = finW"as e — 0.

Lemma 5.12. Let 0 < r < land 1 < g < co. Let ® € Lip(R*;RY). Then the mapping
f > @ o f is continuous from W1 (M; R") to W1(M; R"). o
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Formally, when k = 1, the assumption on f in Theorem 5.7 becomes f € (W*7 N
Y ; /). However, for such f the proof of Theorem 5.7 does not work anymore,
since, already in the case where ./ is flat, the above extension F of an & I function need
not have a gradient in #!. (This is a well-known phenomenon, see, e.g., Peetre [58].)

The educated guess in the next statement comes from the estimate (5.11). (For more
insight, see [50, Theorem 1.15].) Set

— |f (x) = f(y)]
|flx = //% P m d%k(x) d%k(y),

X ={f: M - R":|f|x < oo}.

Theorem 5.13. Assume k = 1. Let 0 < s < land1 < p < oo be such that sp = 1. Let
& € Lip(; R). Then the mapping

Lip(.%;/V)BfH/ﬂéf*w

can be extended by density to (W*? N X)(M; N).
The extension, still denoted f + f/% & frw, satisfies

[ ero

for some finite constants C1 and C, independent of f and &.

< CulflhyspllElleo + CalfIx1ElLip,

VfeWPNX);N)VEeLip(H;R),

Theorem 5.13 follows by repeating the proof of Theorem 5.7.

5.4 A further digression: help from topology and lifting

We next discuss, mostly at a formal level, an alternative, and potentially more pow-
erful, approach to the existence of the distribution f*w. We also present one specific
instance where this approach is successful, see Theorem 5.14 below. In great generality,
a careful analysis of some cases where this approach can be rigorously implemented
will be presented in Detaille and Xiao [29].

As in the previous section, our objective is to give a robust meaning to / & fw In
order to simplify the presentation of the main idea, we assume that .Z is a ball B ¢ R¥
and & is compactly supported in B. (The general case can be reduced to this one, via a
partition of unity and working in chart domains.) Consider an embedded manifold &
and a smooth map ©: & — 4 with the two following crucial properties: (a) (“killing”
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property) the closed form ®*w is exact: there exists some (k — 1)-form y such that
O'w = dy; (b) (lifting property) every “sufficiently smooth” map f: B — ./ has a
“sufficiently smooth” lifting ]?: B— & (ie, ]?satisfies Qo f = f).

A typical example occurs when k = 1, & is the universal cover of ./, and © is the
corresponding covering map. Indeed, since & is simply connected, the smooth closed
1-form ©®*w is automatically exact. On the other hand, if f € W*?(B; #) (with B an
interval), where 0 < s < 1and sp > 1, then f has a lifting f € W*P(B; &) (see Bourgain,
Brezis, and Mironescu [10] and Bethuel and Chiron [7]).

The following formal calculation shows the help one can expect from the existence of
& and O:

/B Efw= /B @0y w= /B £F(@w) = /B £ Fdy) = (1) /B Fy ndE. (526)

We are now in a situation similar to the one in the proof of Theorem 5.7: we can define
the left-hand side of (5.26) as the right-hand side of (5.26), provided the latter integral
makes sense. We note that, in principle, we are now in a better position than initially,
since y is a (k — 1)-form and thus the right-hand side of (5.26) is defined when, e.g.,
f e WA1(B; %) and

there exists a compact set K C & such that f(B) cK (5.27)

— this is to be compared with the natural condition for the existence of the left-hand side
of (5.26), which is f € WVk(B; ).

Actually, when k > 3, one can even go beyond WLk=1(B; &), by adapting the main idea
of the proof of Theorem 5.7, as follows. Let j? e Wi-1/kk(B; &) satisfy (5.27) — by the
Gagliardo-Nirenberg inequalities, this condition is weaker than 17 e (WV-Ing>)(B; &).
Take an extension F € Wik off~, and let g(x, €):=&(x),Vx € B,Ye > 0. Assuming
that & is embedded in R, consider a smooth compactly supported (k — 1)-form y on R
that coincides with y on K. Then, at least formally,

/ &fw=(=1)f / Fy ndE = (-1 / (F7) AdE
B B d(Bx(0,00))
_ N (5.28)
-t [ [FEpadg,
Bx(0,00)

and, as above, we may define the left-hand side of (5.26) or (5.28) as the right-hand side
of (5.28), potentially obtaining in this way the existence of the distribution & + fB Effw
for maps f of lower regularity than expected. For more insight, see [29].

When k = 1, the general philosophy presented above yields a 0-form y, i.e., a function,
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and thus f*)/ = y(]?) is a function. This suggests that natural function spaces leading to
a robust distribution & — /B & f*w involve no derivatives of f.

We next illustrate the effectiveness of this approach when k =1, /" = $1 & =R, and
O(t) = ¢, Vt € R. In this case, any 1-form w on J// is automatically closed, and its
pullback ®*w is automatically exact. Since, in this setting, . is a Lipschitz closed curve,
we assume, for simplicity, that .# = $'. (The general case may be easily reduced to this
one.) In this case, we have the following result, suggested by the above discussion.

Theorem 5.14. Let w be a smooth 1-form on S*.
(1) Let & € WYL(SY;R). Then the mapping
Cl(s5;8h) > f / Efw (5-29)
g1
has a unique extension by continuity + density to C(S'; S') (with the uniform convergence

metric).

(2) Let &: St — Rbe such that & belongs to the Hardy space 1 (S'). Then the mapping (5.29)
has a unique extension by continuity + density to VMO(S'; $) (with the metric induced
by the BMO N £ convergence).

Remark 5.15. 1. Let us note that, in this very special situation, there is no need for a
partition of unity and we do not make any support assumption on &.

2. When o is the canonical volume form on $!, Theorem 5.14 is due to Brezis and
Nguyen [23, Definition 2], and (5.31) below coincides with formula (7.2) presented
in Brezis and Nguyen [23, Remark 14]. m]

Proof. We denote by z = e'? a generic point on S'. Let w = a(z) wg1 be a smooth form
on $!, with a: $! — R smooth and wsl(é’le) := d6 the standard volume form of $!. Let
B(O) = a(ele) and let B be a (fixed) primitive of 3. Clearly, we have
B(6+2€n):B(6)+€/ w,YOeR, VIl eZ. (5.30)
Sl

Let (0) = &(e'?).
We first assume that f € C'(S%;$'). Let ¢ € C'(R;R) be such that f(e'?) = ¢'?®),
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Y 0 € R. Then, for each 6y € R, we have

27+09 27+0o
£ frao = / (O)a(p(0)] ¢(6)dO = / (O)[B(p(8))] o
St 6o 6o
21+609 21+6g
- [v@s@on], - [ e o G5:31)
o N

21+6g
= deg(wion [ o= [ o B0,

where we have used (5.30) and the fact that p(27 + 6p) — ¢(6p) = 2 deg(f). It is clear,
from (5.31), that the last line in (5.31) does not depend on ¢. This can also be derived
from the fact that, for two possible choices ¢ and ¢» of ¢, B(¢1) — B(¢2) is constant (by

(5.30)), combined with the fact that /920’”90 £ =0.

Proofof item (1). Given f € C(S%;8"), let ¢ € C(RR; R) be such that f(e'?) = ¢'?®), vV 0 € R.
If (fj) € C}(S;8Y) is such that fj — f uniformly, then there exist ¢; € C'(R;R) such
that f;(e'?) = ¢'??, V0 € R, Vj, and ¢; — ¢ uniformly. Clearly, (5.31) implies that

21+6g
/ E(fiY'w — deg(f) ¥(60) / . / ¥'(0) [B(p(0))] do.
st st 0o

This proves item (1). Moreover, since the right-hand side of (5.31) is well-defined for
f € C(5%;S!) and does not depend on the choice of a continuous lifting ¢ or of a point
0o, we can take it as the definition of /Sl & f*w for continuous f.

Proof of item (2). This is slightly more involved. To start with, it will be convenient to
rewrite, for f € C1(§'; 8!), the identity (5.31) in a form involving only maps well-defined
on $! (which is not the case for ¢ and B o ¢).

Step 1. An alternative form of (5.31). Assume that f is C'. We write
f(z) = z9e8(1)e9(2) vy 7 ¢ g1, (5-32)

where ¢ € C!(S!;R). The connection between @ and ¢ above is that, up to a constant
integer multiple of 27, we have

¢(0) = deg(f) 6 +p(e'?), VO € R.

We also write @ = a9+ a, where ag = fsl w and a := a — ap. Let C denote a primitive
of 8 — a(e'?). By contrast with B, the function C is 27mt-periodic, and thus the map

e'? - D(e'?) := C(0)
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is well-defined and smooth.

Applying (5.31) with
B(0) := C(6) + a8 = D(e'?) + ag0,V 0 € R,
and
@(0) = deg(f)0 +p(e'%), VO € R,

we obtain

21t+0g
/ £ Fo = deg(f) ¥(6)) / w- / ¥/(6) [B(p(0))] d6
gl St 6o
= 2ndeg(f)P(6o) ao

21+6y
- / Y'(0) [D(f(e'?)) + ag x (deg(f) O + p(e'?))] dO (5.33)

6o

= andeg) [ &= [ D= [ &7
—sedesn) [w [ e= [epin-o [0 [ €7

Step 2. Density. The space C!(S!;$!) is dense in VMO(S!; §') (with the BMO N &!
convergence). Indeed, Lip(S?; S!) is dense in VMO(S!; $!) (see, e.g., the construction in
the proof of [22, Corollary 15.5]). By a standard smoothing argument, this implies that
C'(81;8) is dense in VMO(S!; S!). (See also [23, Lemma 4].)

Step 3. Existence of lifting. If f € VMO(S!;S!), then f has a well-defined winding
number. This follows from the considerations in Section 2.2, using the fact that the
winding number accounts for the homotopy class of continuous maps from $! to $'.
Moreover, there exists some lifting ¢ € VMO(SL; R), unique up to a constant integer
multiple of 27, such that (5.32) holds (see Brezis and Nirenberg [24, Theorem 3, Remark
10 (iii)]). In particular, if f € C*, then p € CF and thus @ is a classical lifting of
z = f(z)/ z9e8(f) (This follows by uniqueness.) In addition, if f;, f € VMO(S?; 81) and
fi = finBMON £, then, for large j we have deg(fj) = deg(f) (by Corollary 2.13) and
we may choose the corresponding liftings ¢; such that ¢; — ¢ in BMO N L. (For the
latter fact, see Lemma 5.16 below.)

Step 4. Conclusion. Let f € VMO(S!;8'). Consider a sequence (fj) ¢ C!($';$') such
that fi — f in BMO N £! and the same holds for corresponding liftings @; and .
Using: (i) Corollary 2.13; (ii) the fact that D(f;) — D(f) in BMO [24, Lemma A.8]; (iii)
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the fact that BMO and #! are in duality, we find that

%deg(ﬁ)/slw/yé—/slé’D(ﬁ)—%/Slw L P
—>%deg(f)/slw/yé—(é’ﬂ(f))—%(/Sl w)><<5’,¢>f

where (-, - ) stands for the duality pairing between %! and BMO.

Therefore, the last line in (5.33): (j) is well-defined for f € VMO(S!; 81) (if we interpret
the second and the third integral as duality pairings); (jj) is continuous with respect to
the BMO N #! convergence; (jjj) can be taken as definition of /sl & ffw for f € VMO.

We next complete Step 3 in the proof of Theorem 5.14.

Lemma 5.16. Let f;, f € VMO(SY;8') be such that f; — f in BMO N Z£'. Then, for
sufficiently large j, there exist ¢, ¢ € VMO(S!; R) such that

f](Z) — Zdeg(f)e@j(Z), f(Z) — Zdeg(f)e@(z), Vze Sl, Vj,

and

¢, — @inBMONZL".

Proof. Letgj = fi/f: $' — 8L Since fj - finBMONZ!, wehave g; —» 1inBMONZ!.
(Apply [24, Lemma A.8] to the map (z, w) — zw.) By Corollary 2.13, for large j we have
deg(gj) = 0, and thus we may write g; = e'?i, with ®; € VMO(S%; R) [24, Theorem 3].
Moreover, for large j, we may choose ¢; such that

|®jlBmo < 4lgjlBmO (5-34)

([24, Theorem 4]).
Set¢; = fsl @j. Combining (2.5) with (5.34), we find that

llgi —e*ill < [le'®i = el < [|@; — ¢jlli < 4C|gjlBmo- (5.35)

Therefore, we have e’/ — 1 as j — oo, and, after adding to each Gj (and c;) a suitable
integer multiple of 277, we may assume that ¢; — 0. Going back to (5.35), we find that
®; — 0in BMO N Z!. Finally, the conclusions of the lemma hold with Q=9+ ®i
where ¢ € VMO(S'; R) is such that f(z) = z4¢8(/)e'?Z) vz € §1. O
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6 A higher dimensional case

6.1 Heuristics

In Sections 3 and 4, we have considered a situation where dim .# and k = degw
coincide. A typical more general situation consists of considering maps f : /4 XW — ¥,
where W C R’ is an (open) set of parameters. Let0 < s < 1and 1 < p < oo be
such that sp = k. Assuming that f(-,w) € W*%P for a.e. w, one may consider the
map w +— F(f(-,w)), establish its properties, and estimate its “size”. In view of
the applications we have in mind, we investigate here a similar, but slightly different,
situation.

In what follows, we consider: (a) a smooth closed k-form w on /#; (b) 0 < s < 1 and
1 < p < ocosuchthatsp = k; (c) an integer N > k.

In order to simplify the presentation, we consider only maps “that live in a compact
set”. We could consider for example the space W*”(Q; /), with Q C RY a smooth
bounded open set. Our actual choice is to work instead in the space

Wls’p(]RN;./V) = {f e WSP(RN; #): f is constant outside K = K(f) c BV},

where K is a compact set. (However, all the results below have counterparts for the
space W*P(Q; ¥).)

The purpose of this section is to give a robust meaning to the action of the k-form
f*@ on appropriate “test forms”, with f € Wls P(RN; ), and to exhibit the homotopical
information encoded by this action, at least for “nice” f’s.

An initial remark is that f*w, which is formally a k-form, may act, up to the action of
the Hodge *-operator, either on k-forms, or on (N — k)-forms. For convenience matters,
it is customary to choose the latter perspective.

We now present some heuristics, provided by the next formal calculation, inspired
by (5.5). If £ € CZ(RN; AN-K), then we formally have

/ f*a)/\éz—/ d[f*a/\~]:_/ f*(da)/\g
RN RN x(0,00) RN %(0,00)

+ (=1)k+1 / Fa AdE.
RN x(0,00)

As explained in Section 5.3, in order to treat the latter integral in (6.1), the assumption

(6.1)

fe Wls P (RN; ) is not sulfficient. For example, when k > 2, we have to make the extra
assumption f € Wll_l/ k’k(]RN ; /) (see Theorem 5.7). In order to work in the minimal
space f € Wls P(RN; #), it is natural to require that the latter integral in (6.1) vanishes.
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This is the case if dg = 0, and can be achieved if d& = 0 (take g(x, €)= &(x),Vx € RN,
Ve > 0). In RY, the assumption dé = 0 is equivalent to & being exact. With this in
mind, we do not investigate below the action of f*w on general (N — k)-forms, but only
on exterior differentials of (N — k — 1)-forms.

In view of the above discussion, it is natural to consider the operator (at least formally)
given by

(Tf,0) = /}R . Ff'w AdL, VY C e Lip(RN; AN7F1), (6.2)

To connect the definition (6.2) with the informal exposition in the introduction, we
mention more specifically that our definition of T amounts to

Tf= (1)1« d( f*w) in the sense of distributions (or rather currents), (6.3)

so that the assumption Tf = 0 is indeed the same as d[f*w] = 0.
To justify the above, writing @ = f*w and using standard identities from exterior
calculus (see, e.g., [33, 1.7.8]), we find that

(da) A C=(xxda) A(x# C) = (++da, »C) = (+da, C).

On the other hand, we have

0:‘/RNd(oc/\C):/]RN(da)/\C+(—1)k/]RNa/\dC,

whence the claimed identity.

A crucial property in what follows is the density of Wll’k(]RN ; /) into Wls PRN; ).
Although not stated in these terms, this property was implicitly obtained in Brezis and
Mironescu [21]. Indeed, the proof of Theorem 3 in [21] explicitly exhibits, for a given
f e Wls’p(lRN;./V), a sequence (fj) C Wll’k(]RN;/V) such that fj — f — 0in WS#(RV).
Moreover, this sequence satisfies the additional properties: (j) (fj) C Wl1 (RN; ),
V1< g <k+1;(j) fj = f in RN \ BN. For further use, we note that, by the Gagliardo-
Nirenberg inequalities, if k > 2, then Wll’k(]RN ; N) C WlS P(RN; #). This fails when
k =1, but we have Wll’q(]RN;/V) - Wls’p(]RN;/V),Vq > 1.

Clearly, when f € Wll’k(]RN ; /) (j)f w is naturally defined a.e. as the pullback of w
through df; (jj) f*@ € L1 RN; AF); (jjj) (Tf, C) is well-defined and satisfies the obvious
bound

(Tf, O < CIVFIFICILip,
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where the finite constant C depends only on w. For such f, Tf was considered by
Bethuel, Coron, Demengel, and Hélein [8], with the purpose of characterizing the
closure of smooth maps in the space of W"¥ mappings. In the same functional setting,
some of the properties of T were investigated by Giaquinta and collaborators — see for
example Giaquinta, Modica, and Soucek [36, Chapter 5.4], Giaquinta and Mucci [39],
Giaquinta and Modica [34] — and in a different direction by Alberti, Baldo, and Orlandi
[1]. These ideas have their roots in the work notably by Bethuel [4], Almgren, Browder,
and Lieb [2], and Brezis, Coron, and Lieb [19].

Our main purpose in this section is first to give a robust meaning to Tf when f €
WlS P(RN; ) and to obtain the corresponding estimate, and then to exploit this object
to obtain a characterization of the closure of smooth maps in Wls P(RN; ) for a large
class of target manifolds .#. When ./ = $* and w is the standard volume form, the
first part of this program was completed by Bourgain, Brezis, and Mironescu [11] when
N =k +1, and for a general N > k + 1 by Bousquet and Mironescu [14]. The second
part of this program was addressed by Mucci [54] in the special case where /4 = Sk,

6.2 Existence of a robust map T

Recall that we consider: (a) a smooth closed k-form w on #; (b) 0 < s < 1 and
1 < p < oo such that sp = k; (c) an integer N > k.

The first main result in this section is

Theorem 6.1. Let k > 2.

(1) The map T, defined in (6.2) for f € Wll’k(]RN ; A), has an (unique) extension by continuity
to W, 7 (RN; ).

(2) The extension, still denoted T, satisfies
KTF, O < ClflyepICluip, ¥ f € WP (RN; ),V C € LipRN; ANTF), (6.4)

where the finite constant C depends onlyon s, p, N, and .

(3) Let I1 be as in (4.11) and a € CZ(R"; AF) be an extension of w. We have the following
formula:

(Tf,C)=- / F'(da) AdC, V f € WP (RN; ),
RNx(0,00) (6.5)
V C € Lip(RN; AN-k=1),

Here, F := I1 o F, with F defined by (6.6) below, and C(x, t) = {(x), Vx € RN, Vt > 0.
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Remark 6.2. When /4 = 8K and w = wgk is the standard volume form on Sk then
Tog f = (1! (k+1)+Jac f

(see (6.3)), where Jac f is the distributional Jacobian (or more precisely, the Jacobian in
the sense of currents) as defined in [11, 14]. O

The proof of Theorem 6.1 relies on the following cousin of Proposition 5.9.

Proposition 6.3. Fort € Rand x € RN, let i;(x) == (x,t). Let Q C RN be a smooth bounded
open set. For F € Lip(Q X [a,b];R") and & € Lip (Q X [a, b]; AN=%=1) we have

/Qx(a,b)F*(da) ANdE = /Q(Fb)*oz Ad(i;¢) - /Q(Fa)*a A d(i,&).

In particular, if C € LipC(Q;AN‘k‘l), then

/ F*(da) AdC = / (Fp)'a AdC — / (F,)'a AdC.
Qx(a,b) Q Q

The proof of Proposition 6.3 is a straightforward variant of the one of Proposition
3.26.

Proof of Theorem 6.1. In what follows, C; denotes a finite constant independent of f.
Let p € CZ(BY) be a mollifier (in RN). For ¢ > 0, set

F(x, €)= f * pe(x). (6.6)

For every f € glic(]RN ), the map F is smooth and

[VF(x,¢)| < Qf
& B,(

€

)If(y)—f(x)ldy,VxG]RN,£>O. (6.7)

We define the associated map F by F:=TIoF.
The existence of an extension of T to Wls P(RN; ) relies on Steps 1 and 2 below.

Step 1. For f € Wll’k(]RN;/V), we have

/]RN x(0,00)

Indeed, since f € % N Wll’k, by the Gagliardo-Nirenberg inequality, we have

F(da)| < 0. (6.8)
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By standard trace theory, (6.9) implies that
F e WHRN x (0, 0)). (6.10)

We obtain (6.8) from (6.10) and the fact that |F*(da)(x, )| < Co|VF(x, €)|+L.

Step 2. For f € Wll’k (RN; ), we have
flondl=- / F*(de) A dC. (6.11)
RN RN x(0,00)
Indeed, let 0 < a < b < c0. Let ¢ = p(x) € CZ(Bp42(0)), x € RV, be such that ¢ = 1

in EbH(O). Since F(-, t) is constant in (RN \EbH(O)) X [a,b], we have, by Proposition 6.3
(applied with Q := Bj1,(0)),

/ F(da) AdC = F*(da) AdC
RN x(a,b) Bp+1(0)x(a,b)
_ / F(da) A d(3D)
By11(0)x(a,b)

= / F*(da) A d(¢Q)
By12(0)x(a,b)

~ N (6.12)
_ / (B n d(60) - / (Ea)a A d(60)
Bp+2(0) By4+2(0)
- / (Fp)'a AdC - (Fa)'a AdC
Bp+1(0) Bp41(0)
- [ Eranac- [ Eranac
RN RN
We notice that
/ () andd < C3|C|Lip/ |VE(x, b)|* dx. (6.13)
RN RN

By (6.7) and the fact that f = ¢y outside BY for some constant c, for b > 1, we have

0, if x| >1+b
I[VF(x,b)] < {Cy/bN*1, if1 < |x| <1+b. (6.14)
Cs/b, if |x] <1



We justify, e.g., the second estimate. If 1 < |x| < 1+ b, we have, by (6.7):

C Cq
VEGe D) < o / [ I fldy = 55 / = Fwldy

Cs Cy
< W/BNICf—f(y)Idys A

Combining (6.13) and (6.14), one gets

bN 1
We next note that
F. — fin WUE(RN) as e — 0. (6.16)

Combining (6.16) with the W'*-continuity of the superposition with Lipschitz functions
(see, e.g., [22, Theorem 15.6]), we find that

[loF, —>ﬁ0finW1'k(lRN)ass — 0,
ie.,
f(-, €)= fin WLIE(RN) as ¢ — 0. (6.17)

From (6.17) and the ZP-continuity of the superposition with Carathéodory functions
(see, e.g., Rindler [59, Theorem 2.13]), we have

(FeY'a — frfain £1ase — 0. (6.18)

Finally, (6.11) follows from Step 1, (6.12), (6.15), (6.18), and the fact that, for every
extension a of w, we have

ffa=f'wae.

(This last property follows from the chain rule for the superposition of a smooth map
and a Sobolev map.) Step 2 is completed.

In view of (6.11), it is natural to define, for f € Wls P(RN; ¥ ), (Tf, C) as the quantity
on the right hand side of (6.11). This requires first to prove that this quantity makes
sense and is finite. The proof of these facts is reminiscent of the one of Theorem 4.1.

For this purpose, we first settle a measurability issue by introducing h(x), a convenient
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substitute of /(x) defined as in (4.21). To motivate the definition of ﬁ(x) below, we note
that, if x € RY is a Lebesgue point of f, then h(x) > 0. (Since we are no longer in the
setting where W*7 is embedded into VMO, we cannot use (2.30) anymore to conclude
that /1 has a uniform lower bound.) Assuming further that /1(x) < co, we therefore have

6 h(x)
5 = dist(E(x, h(x)), #) < [F(x, h(x)) = f(x)] < / |0 F(x, €)| de. (6.19)
0

With (6.19) in mind, we set

G(x, €)= [0:F(x, ¢),Yx e RN,Ve >0, c:= /2, (6.20)
0, if [ G(x, e)de = oo
E(x) =100, if /Ot G(x,e)de <c,Vt>0. (6.21)

inf{t > 0: fot G(x,e)de > c}, otherwise
By the above, we have
E(x) < h(x) for a.e. x € RV, (6.22)

The measurability of h(x)is an easy consequence of the following result.

Lemma 6.4. Let X be a metric space. Let g: X X (0,00) — [0, ) be continuous. For
0 < ¢ < oo, define

0, if fol g(x, e)de = o0
g(x) = q oo, if fot g(x,e)de <, Vt>0. (6.23)
inf{t > O:fot g(x,e)de > c}, otherwise
Then g(x) is a Borel function.
Granted Lemma 6.4, the function 1 is Borel.

Step 3. For f € Wls P(RN; #), the form F*(da) is integrable over RN x (0, ), and

/]RN x(0,00)

Repeating the proof of (4.28) (relying on (6.7) instead of (4.15)) and using (6.22), we

F(da)| < Colf b, (6.24)




have, for a.e. x € RN,

/ oolf*(da)(x, ¢)|de < / oolf*(da)(x,e)lds
0 )

h(x
< /~ |f*(da)(x, e)|de (6.25)
h(x)
< Cio— 1 .
[A(x)]°F
On the other hand, by Holder’s inequality, we have
t p p-1 p=1 pt
(/ |VE(x, €)| ds) < ts”(—) / P11 VE(x, €)|F de. (6.26)
0 sp 0
By the standard theory of weighted Sobolev spaces (see, e.g., [50, Theorem 1.2]), we
have
/ P VE(x, e)|P dx de < Crlf [y, (6.27)
RN x(0,00)

Combining (6.26), (6.27), and the definition of h, we find that ﬁ(x) > 0 fora.e.x € RN,
On the other hand, if 0 < h(x) < oo, then clearly

h(x)
/ |0:F(x, e)|de = =. (6.28)
0

Combining (6.28) and (6.26), we find that

1
[h(x)]5P

< C12/ eP1=90719,F(x, )P de fora.e. x € RV, (6.29)
0

The estimate (6.24) follows from (6.25), (6.27), and (6.29), hence completing Step 3.

Finally, the existence and uniqueness of the extension of T rely on the density property
of Wll’k (RN; #) in Wls P(RN; ) (see the discussion in Section 6.1) and the next step.

Step 4. The map W, "(RN; #) > f F*(da) € LY RN x (0, 0); A1) is continuous in
the following sense: if f;, f € Wls P(RN % (0, 0); #) are such that | fi = flws» — 0 and
cf = cf, then

F(da) - F(da) in Z' (RN x (0, 0)). (6.30)
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In order to prove (6.30), we first note that
(fj—cfj.)—(f—cf)—>0in$’7. (6.31)

This follows using: (i) |fj — flws» — 0; (ii) the fact that (f; — c5) — (f — ¢f) is supported
in BY; (iii) the Poincaré type inequality ||g|l, < Ci3|g|ws», valid for g supported in BY.

Using (6.31) we find that, up to a subsequence, f; — f a.e. and then, by dominated
convergence,

D‘}I?j — D'F uniformly on compacts of RN x (0, o), V ¢. (6.32)
Using (6.32) with ¢ = 1 yields
f;(doz) — F(da) pointwise. (6.33)

On the other hand, let E- be associated with f; as in (6.21). By the proof of (4.28), we
have

= C14 N .
|F](da)(x, €)| < W}({»ﬁj(x)},\?’x e RY,Ve>N0.

We next claim that there exists an Z!(RY) function H = H(x) such that, up to a
subsequence,

1
[hj(x)]F
Indeed, by (6.277), we have

e VPVFi(x, €) = e TUPVE(x, €) in ZP (RN x (0, 00)).

By the converse to the dominated convergence theorem, up to a subsequence, there
exists some | = J(x, ¢) € ZP(RN x (0, )) such that

e TVPIVE(x, ) < J(x,€),¥j, ¥ x € RN, Ve > 0.

For this subsequence, (6.29) yields

— < Cg5 /Oo[](x, e)]P de = H(x),
[hj(x)]F 0

so that (6.34) holds, as claimed.



Combining (6.33)—(6.34), we obtain (6.30), possibly up to a subsequence. However,
the uniqueness of the limit in (6.30) implies that (6.30) holds for the full sequence.

The conclusions of the theorem follow from Steps 1—4. O

We next consider the case k = 1. As explained in Section 6.1, some care is needed to
define initially T f, because of the non-embedding Wll’l(lRN ;N) ¢ Wls P(RN; ). With
this in mind, we have the following version of Theorem 6.1.

Theorem 6.5. Letk =1. Let1 < g <2.

(1) The map T, defined in (6.2) for f € W11 ‘I(RN; ), has an (unique) extension by continuity
to W, 7 (RN; ).

(2) The extension, still denoted T, satisfies
KTf, O < CIf . Cluip, V f € WP (RN; ),V C € Lip(RN; AN72),
w

where the finite constant C depends only on's, p, N, and w.

(3) Let I1 be as in Section 4 and a € CX(R"; A) be an extension of w. We have the following
formula:

(Tf,C) = - / F'(da) AdC, ¥ f € W, P(RN; ),V C € Lip(RN; AN2),
RN x(0,00)

Here, F := I o F, with F defined by (6.6), and {(x, t) == {(x), Yx € RN, Vt > 0.

Proof. The proof is essentially the same as the one of Theorem 6.1. The only differ-
ence occurs in Steps 1 and 2, where we rely on the Gagliardo-Nirenberg embedding
Wll’q(]RN) N Z°(RN) c WH/22(RN), valid when g > 1 (but wrong when g = 1). O

We continue with the

Proof of Lemma 6.4. We only need to prove the lemma in the case where g is positive.
Indeed, if the lemma holds for positive maps and g is only assumed to be nonnegative,
we let g,(x,¢) == g(x, &) +1/n, n > 1. Then, g, / g, and by the lemma for positive
functions, the g,,’s are Borel functions. Therefore, g is a Borel function as well.

Hence, we assume that g is positive, and we will prove the lemma by constructing a
sequence (g,) of continuous functions such that g, — ¢ pointwise.
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Step 1. Define

1, ife<1/n
gn(x, ) =1n, ife>n

g(x,¢€), otherwise

and let g, be associated with g, as in (6.23). Since g(-, €) is continuous, we clearly have

1 t
/ gn(x, €)de < oo and tlim / gn(x, €)de = oo.
0 —Jo

By (6.23) and the fact that ¢ > 0, this implies that 0 < g,(x) < oo is the only number
such that

§n(x)
/ gn(x, e)de =c. (6.35)
0

Combining (6.35) with the continuity of g, one easily obtains that g, is continuous.

Step 2. We prove that lim g,(x) = g(x), which implies that g is a Borel function. To
n—00
prove this, we have to consider the three cases occurring in the definition (6.23).

Assume first that /01 g(x,t)de = oo (and thus g(x) = 0). For large n, we have
gn(x) > 1/n and

() 1
/1 gn(x, e)de =c— pt (6.36)

n

On the other hand, for any given t > 0 and large n (depending on t), we have

t t
/ gn(x, e)de = / g(x,e)de > c. (6.37)
1 1

n n
For such n, we have g, (x) < t. (This follows from (6.36) and (6.37).) Therefore, in this
case we have g,(x) — 0 = g(x).

The case where g(x) = co is similar, since for any fixed 0 < M < oo and large n
(depending on M), we have
M M 1
gn(x, e)de = glx,e)de <c——,
1/n 1/n n

and thus, for such n, we have g, (x) > M.
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Finally, assume that 0 < g(x) < oo, and thus fog(x)

large 1, we have

g(x,e)de = c. If t < g(x), then, for

t t

t
gn(x, e)de = g(x, e)de < / Q(x, e)de <c— 1,
1/n 1/n 0 n

and thus, for such n, we have g, (x) > t. Similarly, if M > g(x) then, for large n, we have
gn(x) < M. m|

By analogy with Corollary 5.4, we have the following Corollary.
Corollary 6.6. Two cohomologous forms yield the same T.
Proof. LetT, be the operator T associated with w. Let w1 = w+dn, withn € C*(/; Ak,
be an element of de Rham cohomology class [w]. If « is a extension of w, we claim that
a1 = a +d(y IT'n) (with ¢ as in (4.16)) is an extension of wj. Indeed, this amounts to

proving that d(y IT'n) is an extension of d7). In turn, this property is obtained as follows.
We have

d(y IT'n) = dip A IT'n + 1 dIT'y. (6.38)

By the proof of (4.17) and the facts that i) = 1 and d¢» = 0 near ./, we find that the
right-hand side of (6.38) is indeed an extension of dn.

By Theorem 6.1 and the fact that clearly da; = da, we have
(T, f, C) = — / F(daq) AdC = — / F*(da) AdC = (T, f, C). O
RN x(0,00) RN x(0,00)

6.3 T “hears” singularities

In this section, we consider: (a) a smooth closed k-form w on //; (b) an integer N > k.
In this setting, we provide, for “nice” f’s, an explicit formula for (T f, C) in terms of the
homotopy classes “carried” by the singular set of f. We start by defining adapted nice

f’s. Consider the class

Py = {f: RN = : f is constant in RN \ BN, f € C*(BN \ 8(f)),
S(f)isa (N — k — 1)-closed, oriented submanifold
of BN, |[Vf(x)| < C(f)/dist (x, S(f)),Vx € RN}.

(Itisimportant to note that both the manifold §'( f) and the finite constant C(f) depend
on the nice map f.) Adapting the arguments in Detaille [28], one may prove that % is
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dense in Wls P(RN; #)when0 <s <1andk < sp < k + 1. (See [28, Theorem 1.4] for
a similar statement in the function space W**((=1,1)N;.#").) However, since density is
not relevant for the main result of this section, we overlook this property and focus on
the calculation of Tf for f € %;.

Let f € &1 and let &, ..., Sy be the connected components of & = §(f). Consider,
for z € &}, the affine normal space N.d§; to §; (passing through z), with the “natural”
orientation induced by the one of &}, i.e., we ask that a direct basis of T, §;, completed
with a direct basis of N,&;, forms a direct basis of RN. Let S.(z) be the sphere of
radius ¢ of N,d; centered at z, with the orientation induced by the one of N,§;. It
is straightforward (using the fact that, on a sphere S, f +— /s f*w is a homotopical
invariant; see Corollary 3.29) that the quantity fsg @ f*w does not depend on small ¢
(smallness depending only on &) or on z. With this in mind, we may set

C; ::/ ffw,Vz e &, V0<e<e=¢S).
Se(z)

Our result is the following.

Theorem 6.7. Let f € K1 and define c; as above. Then

(Tf,C) = (=1)fN+ LN [ £,V e Lip(RN; AN7F-1), (6.39)

¢
i=1 Si

The above result was obtained for a slightly different, “less nice”, dense class of maps,
by Giaquinta, Modica, and Soucek [36, Section 4.2, Theorem 1]; see also Jerrard and
Soner [45, Theorem 1.2], Alberti, Baldo, and Orlandi [1, Theorem 3.8], and Bousquet [13,
Proposition 1]. Their proofs require more advanced geometric measure theory argu-
ments than the proof we present below, which merely relies on an iterated application
of the Stokes formula.

To prove the theorem, we first consider a special case.

Lemma 6.8. Let (x, y), with x € RN %1 and y € R*1, denote apointin RN. Let f = f(x,v),
with x € Q and y € B,(0) \ {0}, be a smooth map such that f(x,y) € # and

IVf(x, )l < C(Nlyl™, Vx € Q,Vy € B,(0)\ {0}. (6.40)

73



Let C € Lip (Q X B,(0); AN7K=1). Then

/ frw AdT = (-1)FNTDH / fxo, Y@ / Cx(-,0)
QxB,(0) Se Q

— (_1)k(N+1)+l/ f(x(]/')*w/ C, (641)
Se 0Ox{0}
Vxpe Q,V0<e<r.

Here: (i) S is the sphere of radius ¢ of]R"+1 centered at 0; (ii) Cx(x,y) is the coefficient of
dxl A AdaNk1iy

Proof. We first note that it suffices to prove (6.41) when C € CZ°. (The general case is
then obtained by smoothing, using dominated convergence in the first and the third
integral.)

Using: (i) the estimate (6.40); (ii) the fact that the degree of w is < k + 1; (iii) Stokes’
formula; (iv) the fact that C has compact support in Q x B,(0); we find that

/ frw AdC = (-1)" lim d(f*@ A Q)

QxB,(0) 20 J ox{e<y<r} (6.42)

= (-1)**!lim fo AL
€20 Joxs,
Next, we write, with Cs g = Ca g(x, y),
= Z Capdx® AdyP (6.43)
ac[1,N-k-1], Bcl[1,k+1]
#a+#p=N—-k-1

(with the convention that the indices in & and f are taken in the natural order).

Let us note that Cy = Cq g, witha :={1,...,N -k -1} and § := @.

The decomposition (6.43) is suggesting that we have to show that the contribution
in (6.42) of the coefficient C, g converges to 0 as ¢ — 0 when g # @. Without loss
of generality, we may assume that « = {1,2,...,a} (possibly with 2 = 0) and =
{1,2,...,b},withb > 1. Set p’ :={1,2,...,b -1} and let

n:= yb “frw A (Capdx® A dyﬁ').

Then 1y is an (N —2)-form in RN, smooth in RN=¥~1 x (R¥*1\ {0}), and such thatn = 0
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near d(Q X S;). Using Stokes” formula again, we find that

0= / dn = (-1)F / Yo ffo AdCap Adx® AdyF
0OXS¢ OXS,
(6.44)

+(-HN=2 fw A (Capdx® AdyFf).
0OXS,

Using the fact that |[Vf(x, y)| < Cly|™' and C € C&(Q x {|y| < r}; AN=¥-1), we have

/ yb “ffw AdCap Adx® A dyﬁ, < C/ €- ik = O(e). (6.45)
OXS, OXS,

&

From (6.44) and (6.45), we find that, with a := {1,...,N — k — 1}, we have
/ ffonC= ffw A (Cy dx®) + O(e). (6.46)
QXS{ .QXSE

Since [Cx(x, y) — Cx(x,0)| < €||VCy]||o for any x € Q and y € S, (6.46) implies that
/ ffoAC= ffw A (Cx(x,0)dx®) + O(e)
OQXS, 0QXS,
- /Q (707 @) A G, 0)dx) + O 6.47)

= (=1)N=k=D) / Cx(x,O)( / f(x,~)*a)) dx + O(e),
0] Se

where the last equality follows from the Fubini theorem.

Combining (6.42) and (6.47), we obtain (6.41), since, by standard (smooth) homotopy
arguments, the integral /s f(x,)*w does not depend on x € Q and ¢ < r. |

Proof of Theorem 6.7. As in the proof of Lemma 6.8, we may assume that C is smooth.
Without loss of generality, we may also assume that supp ¢ ¢ BY.

Consider a finite cover of EN with open sets U; such that, for each j, either U; NS = @
or there exists an orientation preserving diffeomorphism @;: {|x| < 1} x{|y| < 1} — U;
such that q)].‘l(cS’ NUj) = {(x,0):|x| < 1}. (Here, as in Lemma 6.8, we have x € RN-k-1
andy € RK+1) Using a partition of unity subordinated to the cover (U;) and the linearity
of (6.39) with respect to ¢, we may assume that C is compactly supported in some U;.

If § NU; = @, then

/]RNf*w/\dC=(—1)k/u'd(f*a)/\g):0_
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If $NU; # @, let i be such that § N U; C &;. Using: (i) the estimate |Vf(x)| <
C(f)/dist(x, S(f)); (ii) the fact that the degree of w is < k + 1; (iii) standard properties
of the exterior differential calculus, we find that

/ f*a)Adcz/ ffw ANdC
RN U]‘
-/ [(f o B ] A d((@))°C).
{lxf<1}x{lyl<1}
We deduce from Lemma 6.8 that, for |xo| < 1and € < 1,
i [(f 0 ®)Y ] A d((@))'C)
{lxf<1}x{lyl<1}

= () /S (f 0 ®i(x0, )'w A (@)C.

x|<1}x{0}

(6.48)

By change of variables, the latter integral in (6.48) equals

/ = ¢ (6.49)
$NU; S

Therefore, (6.39) follows from (6.48) (with xp = 0) and (6.49) provided

/S (f 0 ®;(0, )@ = c. (6.50)

For this purpose, consider, for z € &, an orientation preserving isometry T = T, of
R onto N, & such that T(0) = z. We now obtain (6.50) from

/ (o000 = Ji oy

and standard (smooth) homotopy arguments, using the fact that, for small ¢, the em-
beddings

Se 3y > Dj(0,y), respectively S. 5 y + T, (0,0(¥)

of ®;({0} X S¢), respectively S.(®;(0,0)) (viewed as a positively oriented sphere on
Nq)j(o,o)o?) are isotopical in RN\ §. O
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6.4 Slicing

In this section, we consider: (a) a smooth closed k-form w on /#; (b) 0 < s < 1 and
1 < p < cosuch that sp = k; (c) an integer N > k + 1 (most often, N > k + 1).

We start with a formal calculation that will provide insight for the main results in
this section. Let N > k+ 1 and write N = {+v, with ¢ > k+1and v > 1. Let
f e Wll’k (R%; /) and consider a Lipschitz form of the type ¢ = ndx® = n(x) dx®, with
xeR'and o C [1, ], #a = { —k — 1. Then

(Tf,C):/f*a)/\dC:/f*a)/\dn/\dx“.
R¢ R¢

Consider next f = f(x,y) € Wll’k (RN; #), with x € R® and y € R”, and a Lipschitz
form of the type

C=ndx* Ady =n(x,y)dx* Ady, (6.51)
with #a = ¢ —k —1and dy := dy! A --- A dy". Using the identity
frondlndx® Adyl = f(-, y)'@ Ad(n(, y)dx®) A dy,

and the Fubini theorem, we find that, for C as in (6.51), we have
(Tf, 0= [ (TR e, p) st dy, 652)

Our first purpose in this section is to extend the validity of (6.52) to f € Wls PRN; ),
allowing also permutations of the coordinates x' and y/.

Consider a partition [1, N] = AUB, with A ={i; <ix <--- <}, B={j1 <o <
-++ < jy}. (The above calculations correspond to the choice A = [[1,¢], B=[{+1,N].)
Given a point z = (z!,...,zN) € RN, let x = (z",...,2") ~ (x},...,x)) e R, y =
(z,...,z") ~ (y},...,y") € RY, and identify z with (x,y). We associate with each
partition (A, B) a signature o = o(B) € {—1, 1} through the formula

del A--dat Adyt Ao AdyY = o(B)dzt Ao AdZN. (6.53)

Let « C [1, €] be such that #a = { — k — 1 and consider an “elementary” Lipschitz
form of the type

C=ndx* Ady =n(x,y)dx® Ady. (6.54)
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Itis important to note that every Lipschitz form is the sum of at most (, _I\{{_l) Lipschitz
formsasin (6.54), and thus Proposition 6.9 below provides a “slicing” or “disintegration”
formula for (T f, C) for any C.

We next note that, if f € Wls’p(lRN;/V), then, fora.e. y = (yl, ..., y") € RY, the partial
function f(-, y) belongs to Wls P(RY; ), and thus the distribution T f(-, y) makes sense
and acts on forms & € Lip(R; A“~F-1).

Proposition 6.9. Let N > k+1. Let f € Wls P(RN; #) and let C be as in (6.54). Then the map

R" >y Ge(y) =<(Tf(,y),n(, y)dx?)

is defined a.e. and is (Lebesgue) integrable.
Moreover, we have, with ¢ = (B) as in (6.53),

(Tf,ndx® Ady) = o / (TFC,y),nC,y) dx®) dy
R (6.55)
=0 ]RV<Tf G, y),n(,y)dx®) dx” (y).

In the special case where /' = $! and w is the standard volume form, formula (6.55)
was proved by Mironescu, Russ, and Sire [51, Section 3.4, (3.64)].

Proof. We present the proof when k > 1. The case k = 1 is similar; we start from
fe W, with 1 < g < 2,instead of f € Wll’l. We divide the proof into two steps.

Step 1. Formula (6.55) holds for f € Wl1 K(RN; ). Indeed, arguing as in the proof of
(6.52) and using: (i) Theorem 6.1; (ii) the identity

ffondnpadx® Ady = f(,y)'w Adin(, y)dx*] A dy;
(iii) the definition of o in (6.53); (iv) the Fubini theorem, we find that
(Tf,ndx* Ady) = /]RNf*a) Adn Adx® Ady
= [ feoro ndlnt, s ady
= [ ([ seowrondine,mar) az
=7 | (TfC )G, y)dx®) dz” (y).

Incidentally, the Fubini theorem implies that G is Lebesgue integrable.

78



Step 2. 1f (f;) € W,""(RN; ), f € W,”(RN; ), and fj — f in W, 7, then G5 — G
in Z!(R"). Indeed, it suffices to obtain the conclusion up to a subsequence (then use
Theorem 6.1 on the left-hand side of (6.55)). The argument is similar to the one used
in Step 4 in the proof of Theorem 6.1. There exists a null set A ¢ R" and a function
F € ZP(R") such that, possibly up to a subsequence, we have

fiG,y) = f(,y) in W, P (RY), for each y e R\ 4, (6.56)
G, W)lwsr < E(y), Yy, V], (657)
Combining (6.56) and Theorem 6.1, we have Gf(y) — Gf(y), Yy € R"\ A. On

the other hand, (6.57) and (6.4) imply that |G (y)| < C[F(y)]?, Yy, ¥j, whence the
conclusion of Step 2. |

Consider next a general C € Lip(RN; AN ~k=1). Then we may write C =, C, dz” =
Zy Cy(z)dz”. Here the sum is taken over y C [1, N] such that #y = N — k — 1. We may
rewrite

C= Z Z Na,pdz® A dzf = Z Z Na,p(z)dz® A dz#, (6.58)
a B a B

where: (i) the sums are over @ C [1, N] such that#a = -k —1, respectively p C [1, N1
such that #8 = v; (ii)

n . (Cv)_la(a, ,B)Cal_lﬂz ifan ﬁ =0
“* o, fanp+o’

where C, =
o(a,B)dzeHp.

The following Corollary is a direct consequence of Proposition 6.9 and the identity
(6.58).

Corollary 6.10. With the notation above, we have

: _Vk i 1) and o(a,p) € {-1,1} is the sign such that dz°® A dzf =

(Tf,C) = Z a(B) / <Tf(-, zﬁ), Z Ua,ﬁ(" zﬁ) dza> dzf
B RY a

4 )

With the help of the slicing property, one can prove the following dimensional reduc-

= % Z Z U(afﬁ%f(ﬁ)/ (Tf(-, 2P), Carp(, 2P) dz®) dzP.
( a B RY
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tion property. In the next result, we consider the setting of Proposition 6.9.

Proposition 6.11. Let p = p(y) be a standard mollifier and set p. y(y) = pe(y — yo), Yy,
Yo € RY. Then, for a.e. yo € R, we have, with ¢ = 6(B) as in (6.53),

(Tf(,y0), &) = T HM(T, & A (peyo dy)), ¥ & = E(x) € Lip(RGATT. (6.50)

Proof. Using Proposition 6.9 and the fact that, once B is fixed, the signature ¢(B) does
not depend on the choice of @ C A, we find that

(TF A Py dy) =0 [ (TFC0), pn(v)dy. (6.60)

Let p = p(x) be a standard mollifier in R’. Using the notation in Section 6.2, set (with a
as in (4.16)):

fo(%) = f(x,y), Fy(x,8) = fy » pz, Fy =T o Fy, Hy = Fy(da),
xeRl,yeR",E>0.

Then there exists a null set A ¢ R" such that (-, y) € Wls P(RY), V y € RV \ A. Formula
(6.24) in Step 3 in the proof of Theorem 6.1 implies that, for every y € R \ A, we have

[ ilded? < Cilfe s 661
R!x(0,00)
Combining (6.61) and the Besov type inequality

A |f(l y)lg\/s,p d]/ < C2|f|;/s,p (662)

(see, e.g., Brezis and Mironescu [22, Corollary 15.1] or Leoni [47, Theorem 6.35]), we
obtain

R">y— H, € ZHRY; ZHR! x (0, 0))).
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We next note that, by (6.60) and (6.5), we have

KT f,E N (pe,yody)) — o(Tf(-, y0), &)
<G f KTFCy), €)= (TFC, o), E)ldy
Bs(yo)

< C4|5|Lipf / |H, — Hy,| dx de’ dy
B (y0) /RIx(0,00)

= C4|5|Lip ||Hy _Hy()”l dy
B:(yo)
Yo

(6.63)

We finally invoke the vector-valued Lebesgue differentiation theorem (see, e.g., Heinonen,
Koskela, Shanmugalingam, and Tyson [44, Section 3.4]), which implies that, for a.e.
Yo € R”, we have

lim IHy = Hyll1 dy = 0. (6.64)
¢—0 BS(]/O)
Combining (6.64) with (6.63), one obtains (6.59). m|

Remark 6.12. In the above proof, the exceptional null set A depends on the choice of
the closed k-form w. We claim that, actually, we may pick the same null set for every
Indeed, by Corollary 6.6, the exceptional set A depends only on the de Rham
cohomology class [w]. On the other hand, it is clear that the mapping w +— T, (with @
closed k-form) is linear. The claim follows by combining these considerations with the
fact that the k-th de Rham cohomology group of /' is of finite dimension (since .4 is
compact). O

We next present a version of slicing in the case where N = k + 1. As discussed in
Section 5.3, this requires considering “test forms” C whose restriction to k-dimensional
slices are constant. Proposition 6.14 below is such a possible result (others could be
considered) and is fitted to our main result, Theorem 6.23.

To start with, we note the following

Lemma 6.13. Let f € WS (R**1) and set Q, = (=r,r)**1. Then, for every P € R**1, we

have

fip+aq, € WP (P + Q) fora.e. r > 0. (6.65)

Moreover, for a.e. v > 0, we have fip,oo, € WP (P +dQ,) fora.e. P € R*1,

Proof. Let0 < a < b < co. Using the fact that the set {x € R**:a < |x — P| < b} is
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bi-Lipschitz homeomorphic to dQ; X [0, 1] and a standard cousin of (6.62), we find that

/ |fP+8Q, WP (P+9Q, )dr < C(El b)lflws ps (666)

whence (6.65).

The second part follows from the Tonelli theorem. O

Proposition 6.14. Let f € WlS PR, ) and - (0, 00) — R be Lipschitz, with supp ¢’ C
(0, 00). Then, for every P € R we have

(Tf, 9(1- = Pla)) = (<1)F /0 () (fiprag,) dr. (6.67)

Here: (a) 7 (fip+aQ,) = Ip+aQ,,o(fip+a0,) is defined in Corollary 3.29 (with M = P+dQ,);
(b) the orientation on P + dQ, is as in Example 3.16.

Proof. With no loss of generality, we may assume that P = 0. Assume that supp 1y’ C
(a,b) for somea, b > 0.

Step 1. Proof of (6.67) when f € W1 k(]RkJrl ). In this case, f*w can be written as
> Be dx with B¢ = Be(x) € Z}(R¥1) and dx! as in (3.35)- Let

Qe ={x=@x..., x")e Rk+1:mzx|xf| <+x'},1<l<k+1
]
Then,
T 90-1en =3 [ peded nalp- o
= Z(/ ﬁggb’(x‘})@ Adxt - / ﬁﬂ,b'(—x‘})@ A dx‘}).
¢ Qg+ Q-

By the Fubini theorem,

ﬁ”’b/(xl)@ A dxl’ — (_1)k—€+1/ ‘ngl/(x")
Qi,+

= (-1t / b w'(x%( /F

(,xf/‘F

Ql’,+
ﬁf('l xf)) dxe
where

Fppor={x"=(x Lo xRy e RR (. L M ) e Qu i}
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A similar identity holds on (,_. Taking the sum over { and using: (i) Defi-
nition 3.24; (ii) equation (3.36) in Example 3.18 (with C = P + Q, and ay.(x) =
Be(xl, ..., xt1, +xt, x1, . x*1)); (iii) Proposition 3.34, we find that

(TF, 91 o)) = > (=1 / b ¢'<x”)( /
¢ a

é’,x[,#—

l,x

b
- [ ¢'<r>( /a . <f|aQ,>*w) dr

b
- (-1 / V(I (o) dr.

Be(-, xf))dx[

Step 2. Proof of (6.67) for a general f € Wls P(R¥*1; ). Consider some k < g <k+1land
a sequence (fj) C W11 1(RFY; ) such that

fi = fin WP (RF ).

By Lemma 6.13 and a standard argument, possibly up to a subsequence, we have, for
ae.r>0,

fiag, = flag, iIn WP (9Qy; ). (6.68)

Set
Fi(r) = /ag (fjlaQr)*a) and F(r) := J(fia0,)

(which are well-defined for a.e. r > 0).
Using: (i) (6.68); (ii) the embedding W*F — VMO; (iii) Proposition 3.34; (iv) Corollary
3.29, we find that

Fi(r) = J(fijr) — F(r) fora.e.r > 0. (6.69)

In view of Theorem 6.1 and Step 1, in order to obtain (6.67), it suffices to prove that
Fi —» Fin Z((a,b)). For this purpose, consider ®@,: dQ; — dQ,, P,(x) := rx. By
Corollary 3.32, we have

Fi(r) = j(ffIBQr o®d,).



Combining this with Theorem 4.1 with .# = JQ;, we obtain

p _ ;
IFi(nl < Clf1a0, © Prlierao, = Clipg,

P
WP (9Q,) (6:70)

Combining (6.66), (6.69), (6.70), and the converse to the dominated convergence the-
orem, we obtain the desired conclusion F; — F in Z((a, b)). O

Using a special choice of ¢, we obtain the following variant of Proposition 6.14
adapted to boundaries of cubes.

Proposition 6.15. Let f € Wls’p(IRk“;/V). Fore >0and 0 <n < €/2, let Yy = e, be
defined by

1, ifr<e-n
I]DU(T’) :#}n,s(”) = (E—T’)/T], ifE—T] <r<e.
0, ifr>e

Let ng — 0. Then, for a.e. ¢ > 0, we have
I (fipag) = lim (“D T, (1 = Ple), forae. P e R¥ (6.71)

Proof. Let G(P, €) := J(fip+a,) and

1 [¢ .
GulP, o) = < / I Uirsaa)dr = (1S, = Pl

where the equality follow from Proposition 6.14.

Therefore, (6.71) amounts to
t’hm Gf(P/ E) = G(PI E)/ (672)
for a.e. ¢ > 0 and, once ¢ is fixed, for a.e. P € RF*1.

Fix P € RF*1. By the proof of Proposition 6.14, ¢ > J(fip+a0,) is in f‘f&m((o, )). The
Lebesgue differentiation theorem then implies that, for a.e. ¢ > 0, we have

Lim Ge(P, &) = G(P, ). (6.73)
Next, we set G(P, ¢) = liégn inf G¢(P, ¢) and let

A={(P, &) e R x (0,): G(P, ¢) # G(P, ¢)}.
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We note that, for a.e. ¢ > 0, we have f € VMO(P + JQ,; /), and in this case (by
Proposition 5.1)

(P, &) = 7 (fipsao,) = - / (Tl Fp,.)'(da),

(P+dQ¢)%(0,00)

where, as in (4.4), we let

Fpo(x,t) = /P o PRt DFTG)

Using (2.8) (with # = P + dQ;), we find that Fp .(x, t) is measurable with respect
to (P, ¢, x,t), and that G is measurable with respect to (x, €). Similarly, G, and é(P, €)
are measurable with respect to (P, ¢), and A = (G - é)_l{O} is a Borel set. For fixed
P € RF*! we have

/ xa(P,e)de =0
0

(by (6.73)). We find that

/ / xa(P,e)dPde = / xa(P,e)dedP =0,
0 Rk+1 Rk+1 J0

and thus, for a.e. ¢ > 0, we have li{n inf G¢(P, ) = G(P, ¢) for a.e. P € RF*1, Similarly,

for a.e. ¢ > 0, we have limsup G¢(P, ¢) = G(P, ¢) for a.e. P € R*!. This completes the
{—o0

proof of (6.72). O

6.5 Approximation with maps induced by skeletons

In this section, we consider: (a) 0 <s <land1 <p <ocosuchthatl <k <sp <k+1;
(b) an integer N > k. In this setting, we will present several results related to the
approximation of maps in WlS P(RN; ). Most of these results (or at least variants of
them) were essentially established (but possibly not stated) by Brezis and Mironescu
[21]. Here, we adapt the statements therein to our setting and provide only the missing
arguments.

For ¢ > 0 and a point P in the cube Q. = [~¢, &)V, let %g\jp be the N-dimensional
mesh in RN with diameter 2¢ and P as one of its centers, i.e., ‘Ei\lp is the collection of
cubes P +2¢K + Q., with K € 7N,

Let %N I be the (N — 1)-dimensional skeleton associated to %N , i.e., the collection

of the boundar1es of the cubes in %N Similarly, we let %N o2 be the collection of the
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boundaries of the cubes in %5]1; 1 etc. With a slight abuse of notation, we identify %Z P
with chegi,p Cl.

We next discuss the properties of the restrictions of W maps f: RN — R”" to
“generic” skeletons € i p- For this purpose, it will be convenient to consider f not as an
equivalence class, but as an everywhere defined Borel function. Since f is a function,
the restriction of f to any subset of RV, in particular to ‘gi pris unambiguously defined.
For such f, the following holds [20, Appendix E]: For every ¢ > 0, for almost every P € Q.,
and for every cube Ck+1 ¢ ‘[55}1, we have

flackn € WSP(9CK*1) € VMO(ICH). (6.74)

As a consequence of (6.74), if, in addition, f: RN — &, then f| ock+1 has a well-defined
homotopy class in VMO(dC 1 1) (see (2.34)).

We are now in position to state the main result of this section.

Theorem 6.16. Let f € Wls P(RN; ). If there exist co > 0 and a sequence ¢ — 0 such that
the set

Ag = A{P € Qe;: figckn is in WP (9CK*Y; ) and nullhomotopic, ¥ C**! € gf;})}

satisfies |A¢|/|Qe,

> cq for every {, then

s,p

—_—W
fECPRN; ) .

Before proceeding to the proof of Theorem 6.16, we introduce some definitions used
in the proof.

If g: “gflp — R", we define its homogeneous extension H k+1(g): ‘65}31 — R" to the
cubes in %E,l as follows. Let x € Ck*1 e %2‘}1 If x is not the center 0 of C¥*1, we let

e(x —0)

=6+ -

k
€ %E,P
and set

H*(g)(x) = g(y).

The definition does not depend on the choice of the cube Ck*! € %f};l such that
x € C*1, and H**1(g) is “locally 0—~homogeneous”, in the sense that H**1(g) is constant
along the “ray” (0, y]. We also note that H**1(g) is well-defined except at the centers of
the cubes in ‘“6!“131
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Iterating the above construction, we obtain an a.e. defined map
H(g) = HY(HY7H(- (H™(3)) - -)): RY — R".

Wenextintroduce a W*"-type seminorm adapted to skeletons. Givenamap g: %”i P
R", we let

|g| “// |g(x) gyl d%j(x)d%f(y)

st(s‘gf |x — y|]+SP

x‘io”]
and define

Wf’p(%ilp) ={g: %i,P — R": |g|

Ws'p(‘gip) < o0

and 3¢, € R" s.t. supp(g —cg) C BN},
We have the following result.
Lemma 6.17. If f € Wls P (RN), then, for every ¢ > 0 and almost every P € Q., we have

fiel € WP (@] ,),Y0<j<N. (6.75)

Proof. In what follows, C; = C;(N, j, s, p, €) denotes a finite constant (possibly depend-
ing on ¢).

Using, when |x — Y|« > 2¢, the inequality

[f@) = fWI < 1f () = crl +1f(y) = cxl,

we find that
= FOF s
Iflwsp(g] // 0 doe’ (x) Aot (y) + C1 / f) = esl d(x),
¢ %%l , o
[x— y|w<2e

and therefore

If(x) S
/Iflwsp(gjp) / // L do’ (x)d! (y) dP
@ px%, (6.76)

|x— y|w<25

+ Cullf = clly-



By [21, Lemma 6.1], the integral on the right-hand side of (6.76) is dominated by
Colf |ws PRV’ Combining this with the fact that f = c¢; outside BY, we obtain

which implies (6.75). m|
We will call a mesh “gi\lp such that (6.75) holds a “good mesh”.

Proof of Theorem 6.16. With no loss of generality, we may assume that c; = 0, and thus
f € WP(RN).
We divide the proof into 4 steps.

Step 1. If sp > 1 then, for any f € Wls P(RN;R") (not necessarily ./'-valued), there exist
sets D C Q, such that: (j) |D¢|/|Q¢| — 1 as ¢ — 0; (jj) for every P, € D, we have

H(flgkp ) — fin WSP(RN)as ¢ — 0.

Indeed, define

1/2
p) |
WS, p(]RN)

D, = {pegg I = H(fige MW g < (f | - Hfe,

We then have
1/2
L=t )y 22 2 02 =100 £, =10 e 22)
which implies that
1/2
a2 1= (£ -t 0 ?) 677
On the other hand, we have the following result [21, (5.54)].
Lemma 6.18. Ifsp > 1 then, for every f € WS?(RN; R"),
lim f H f = it g, 4P =0 (6.78)

We complete Step 1 via (6.77) and (6.78).
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Step 2. Under the assumptions of the theorem, there exists a sequence (%,,,p,) of good
meshes such that

Hfigr )= f in W (RY;.0) (6:79)
and

fiack+ is nullhomotopic, V C**! € %f;})[. (6.80)

Indeed, since |A¢|/|Q¢,| > co for every ¢, then, for ¢ sufficiently large, we have |[A, N
D,| > 0. We complete Step 2 by choosing, for large ¢, Py € Ay N D,.

From now on, we fix ¢ sufficiently large such that

supp f C B1—9\/N€[(0)' (6.81)

By a standard smoothing argument, it suffices to prove that, under the assumptions
(6.79) and (6.80), H( flgk ) ) can be approximated with Lipschitz maps from RN to ./
eelte

supported in BN. This will be proved for each fixed ¢. In order to lighten the notation,
we write ¢, respectively P, instead of ¢, respectively Py.

Step 3. If (6.80) and (6.81) hold, then H( fl‘g'fp) can be approximated with H(g) for some
Lipschitz map g: €. p — ./ satisfying

supp ¢ € B,_,yx.(0). (6.82)

For this purpose, we first approximate fl‘gkp with Lipschitz maps on %i‘ p by the means
of the following lemma. /

Lemma 6.19. There exists a sequence of Lipschitz maps (g;) C Lip(€ f p; V') such that
) . s,p k . .
8i = fig, in W, (Cgs,P"/V) asi — oo

and, for any cube C* € %ﬁp, if f =0in Ck, then g; = 0in C* forall i.
Granted Lemma 6.19, we complete Step 3 by the following continuity property of H.

Lemma 6.20. For maps g and (g;) in WlS (& é‘ p; R") and supported in B,_, 57,(0), it holds
that

[gi = g in WP(BL,;R")] = [H(gi) — H(g) in WP (RN;R")].

In view of Steps 2 and 3, we complete the proof of Theorem 6.16 via



Step 4. Under the assumptions (6.79)—(6.81), for large i, the map H(g;) can be approxi-
mated in W*? with Lipschitz maps with support in BV.

For this purpose, we first notice that for all cubes C k1 e ‘[55;1, we have W3 (9Ck+1) —
(VMO N ZY)(aCk1). Combining this with Lemma 2.35, and the fact that f takes non-
zero values only on finitely many cubes, we get that for i sufficiently large and for all
cubes Ck+1 ¢ %5/}1, Sijgcks1 ~ f|,9ck+1, and thus 8ijock+ is nullhomotopic. From now on,
we consider such i’s.

We next adapt to our setting an approximation result initially obtained by Bethuel [5,
Section II]. This is the content of the following

Lemma 6.21. Let g € Lip(%é‘ p; V) be such that g5cx+1 is nullhomotopic for all cubes C 1 e
‘Ef}r} and supp § C By _, 5, (0). For 1 < q < k +1, the map H(g) is a strong limit in WL of
maps in Lip(RN; #") with value 0 outside of a compact subset of BN,

We complete Step 4 (and the proof of Theorem 6.16) by combining Lemma 6.21 with
the Gagliardo-Nirenberg embedding

W N P® s WP, Vsp <g<k+1. O

We now justify Lemmas 6.19 and 6.21 used in the proof of Theorem 6.16. They are
variants of [21, Lemma 7.1] and [49, Proposition 2.8]. (However, in [49] the topological
setting is different.) We adapt here the “local” arguments in [21, 49] to the case of maps
defined in the full space and constant at infinity.

Proof of Lemma 6.19. It suffices to repeat the proof of Lemma 7.1 in [21]. There, the maps
are defined only on a cube. However, applied to our situation, the construction in [21]
yields a map ¢ satisfying (6.82). |

Proof of Lemma 6.21. It suffices to repeat the proof of Proposition 2.8 in [49] with two
changes: (i) in the first step of the proof, we obtain the existence of a Lipschitz extension
h: %5}1 — JV of g using the assumption that g5+ is nullhomotopic (in [49, Proposition
2.8], the assumption is 7 (#') = {0}); (ii) in the second step of the proof, we consider
a different homotopy G, designed to preserve the property that we approximate with
compactly supported Lipschitz maps. More specifically, instead of requiring, as in [49,
proof of Proposition 2.8] that, when 6 close to 1, G(x, 0) = a for some a € &*1, we
require that G(x, 0) stays outside supp g. For this purpose, we consider the map G
defined in Lemma 6.22 below (with j := k and, in (4), ¥ =1 - 5VNe¢). For this G
and each P € Q., we have B, , ,(0) C B,_5.(P) C B;_35.(0). Using this fact, it
is straightforward that the approximating sequence considered in the third step of the
proof of [49, Proposition 2.8] is supported in B;_ /,(0). o
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The following lemma relies only on the topological structure of a bounded mesh, so
that, for simplicity, we assume that ¢ = 1 and P = 0. Let %AI\/II be the collection of cubes

2K + Qq, withK € {-M, ..., M}V, and let (g]]w for 0 < j < N —1 be the corresponding
j-skeleton. We identify ‘51\1\4 with the union of its cubes, which is Qop141.

Lemma 6.22. Let 0 < j < N — 1. There exists a Lipschitz homotopy G = G(x, 0): ‘“6[{\/]1 X
[0,1] — @y such that:

(1) G(x,0)=x,Vx e &Y;
(2) G(x,0) € d0Qam1, ¥Yx € o\ Q12 VO > 1/2;
(3) G(x,0) € %), ", Vx €6, V0

(4) for each r > 0 and each cube C € % ,if CN B,(0) = @, then G(x,0) ¢ B,(0), Vx € C,
Vo.

Proof. Consider the Lipschitzmap g: [-2M +1),2M +1]x[0,1] = [-2M +1),2M +1]
given by

g(a, 0) = sgn(a) min((4M6 + 0 + 1)|a|,2M + 1).
For1l <i <N, set
Gi(xl, .., x L at x aN,0) = (L x T g(xd, ), Y, L ).

Clearly, G; satisfies
(G) Gi(x,0)=x,Vx € %AI\/II;
Gj) Gi(x,1) € &), N {x' =2M +1},Vx € B}, with x' > 1/2;
Gj) Gi(x,1) € €l n{x' = -2M —1},¥x € B, with x' < -1/2;

i) Gi(x,0) € %L, Vxe®], Vo.

Let
Gi(x,2N0), if @ <1/(2N)
G2(G(x,1/(2N)),2N0O - 1), if1/2N) <6 <1/N
G(x,0) =
Gn(G(x,(N =1)/(2N)),2N6 -N +1), if(N-1)/(2N) <06 <1/2
G(x,1/2), if1/2<0 <1
Using (j)—(jjjj), we easily find that G(x, 0) satisfies all the required properties. O
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6.6 Approximation with smooth maps to ./
Recall that we consider: (a) 0 <s <1land 1 < p < oo such that sp = k; (b) an integer
N > k.

Only in this section, we make the extra assumption that “the cohomology of ./ sees
its homotopy”. More specifically, we assume that ./ has the following property:

for each f € C°°(Sk; A), we have

(6.83)
[ / f*w =0,V smooth closed k-form w on # | = f is nullhomotopic. >
Sk

Standard results in algebraic topology provide sufficient conditions for the validity
of (6.83). We briefly discuss this in Appendix A. To give a flavor of that discussion, we
note here that ./ := $* satisfies (6.83), as we already mentioned in Example 5.5.

In this section, we prove the following theorem.

Theorem 6.23. Assume that (6.83) holds. Let f € WlS P(RN; ) and let T = T, be defined as
in Section 6.2. Then

—_—w7
f eCPRN; ) ' & [Vsmooth closed k-form w on N, T, f = 0].

Combining: (i) Remark 6.2; (ii) Corollary 6.6; (iii) the fact that H gR(Sk) = R is gen-
erated by the standard volume form wgr, we deduce the following corollary of Theo-
rem 6.23.

Corollary 6.24. Let f € Wls P(RN; $5). Then
s.p

W
feCX(RN;S) ' o Jacf =0.

Thus, as we said in the introduction, in the special case of sphere-valued maps, our
result contains as a particular case the fact that the distributional Jacobian detects the
closure of smooth maps, as announced by Mucci [54].

Before proving Theorem 6.23, we present a (equivalent) form of (6.83) adapted to our
context.

Lemma 6.25. Assume that (6.83) holds. Let C be a cube in R**1. Then

for each f € VMO(JC; N'), we have

Foc,w(f) =0,V smooth closed k-form w on N'| = f is nullhomotopic.
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Proof. First, let us note that, if (6.83) holds, then it also holds for continuous maps. (This
follows from a standard smoothing argument and Corollary 3.28.)

By Corollary 3.29, there exists ¢1 such that
Fac,o(f) = Fac,o(f°), Ysmooth closed k-form w on A4,V € < &. (6.84)

Let W: $¥ — 9JC be a bi-Lipschitz orientation preserving map. By Corollary 3.32, we
have

Fac,w(8) = Tsk (g 0 W), Vg € C(IC; ). (6.85)

The conclusion of the lemma follows from (6.84), (6.85) (with g := f¢), and the validity
of (6.83) for continuous maps. O

Proof of Theorem 6.23. “=" (Here, we do not rely on (6.83).) This follows from Theorem
6.1 when k > 2, respectively Theorem 6.5 when k = 1, since for f € C° (RN; #) and
Ce Lip(]RN;AN_k_l), we have

(Tf,0) = /JRN frowAdl = (1) /RN d(ffw A Q) =0.

“«"” We divide the proof into three steps: dimensional reduction, proof in the special
case where N = k + 1, and a cohomology argument.

For simplicity, in the proof we denote points in RN as (x,y), with x € R**1 and
y € RN-%-1, We note that, if f e Wls’p(]RN;/V) then, for a.e. yo € RN-%-1 we have
£ y0) € WP (RFHL; ).

Step 1. Fix w. By Proposition 6.11 (applied with { = k+1and v = N — k — 1), for a.e.
Yo € RN-%-1 we have Tof(:,y0) =0.

Step 2. Let N = k+ 1 and fix w. Let f € Wls’p(]Rk”;,/V) satisfy T,,f = 0. Then, by
Proposition 6.15, for a.e. ¢ > 0, we have

Ip+90. o fip+a0.) = 0 for a.e. P € RF1, (6.86)
Qe,w\J|P+dQ,

Step 3. We complete the proof of Theorem 6.23 via Remark 6.12, (6.86), (6.83), Lemma
6.25, and Theorem 6.16. O
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A Reading homotopy from integral invariants

In this appendix, we study some necessary conditions that ensure the validity of the
assumption (6.83), which plays a crucial role in Section 6.6.

We first recall that, given a smooth Riemannian manifold .4, there exists a map
bur: i (AN) — Hi(AN;Z), called the Hurewicz homomorphism, that maps a homotopy
class [f] € m() to the cycle fﬁ[Sk].

The following proposition characterizes the validity of (6.83) (and even slightly more)
in terms of the Hurewicz map.

Proposition A.1. Assume that Hi(/V'; Z) is torsionfree. Then,

foreach f, g € C°°(Sk;./l/), we have
(A1)

[/ ffw= [ g'w,V smooth closed k-formwon /| = f ~g
sk sk
if and only if hux is injective.

In particular, (A.1) implies (6.83), specializing to ¢ being a constant map. Proposi-
tion A.1 is well-known to experts, but for the sake of completeness we present here an
argument, using as little technology as possible.

Proof. By the de Rham theorem, there exists an identification 7, : H §R(./V ) — H*(/;R)
between the de Rham cohomology and the singular cohomology. If a cycle ¢ is associated
with a sufficiently smooth domain of /#, then

(Fr(a),0) = / a,

o

with the integral being defined as in Section 3.5.

“<"Let f, g € C*(S¥; /). Our proof is in two steps: we first prove that

/ ffo = {(Jr(w), fﬁ[Sk]), Y closed k-form w on /¥, (A.2)
gk

then find, using (A.2) and the assumptions on ./, that f ~ g.

Step 1. To prove (A.2), we start from the fact that 7 is a natural transformation between
the de Rham cohomology functor and the singular cohomology functor, thatis, o f* =
f bo 7y (see, e.g., Lee [46, Proposition 18.13]). Hence, we find that

/ ffw = (Js(ffw), [$F]) = (fﬁf/y(a)), [S¥]), V smooth closed k-form w on .
gk
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Now, we recall that, thanks to the universal coefficients theorem for cohomology (see,
e.g., Hatcher [43, Theorem 3.2]), we have

H*(/;R) = Hom(Hi(/;Z); R).

Moreover, this correspondence is natural, meaning that the map f* induced in co-
homology by f is dual to the map f3 induced in homology; see, e.g., [43, Page 196].
Therefore,

(F* 7 (w), [$F]) = (Ir(@), fsIS*]), ¥ smooth closed k-form w on ..

This concludes the proof of (A.2).

Step 2. The de Rham homomorphism being an isomorphism, (A.2) and the fact that

) ffw= ) g w, Y smooth closed k-form w on A (A3)
S S
imply that f3[$*] and g4[$*] coincide when evaluated against any homomorphism from
Hi(/;Z) to R. But, since Hi(//;Z) is torsionfree, it is isomorphic to Z/ for some j € N.
Hence, f;[S¥] = g4[S¥].

Therefore, if hur is injective, then (A.3) implies that [f] = [g] in 7x(/#), showing
that (A.1) holds.
“=" We have to prove that, if f € C®(S"; ) is such that f;[$¥] = 0, then f is nullho-
motopic. By (A.2), we find that

f*w =0,V smooth closed k-form w on ./,
gk
and hence (A.1) applied with ¢ a constant map implies that f is nullhomotopic. We
observe that the proof of this implication does not rely on the fact that Hi(//;Z) is
torsionfree. o

Combining Proposition A.1 with the Hurewicz theorem, see, e.g., [43, Theorem 4.37],
which asserts that hur is an isomorphism whenever either k > 2 and ./ is (k — 1)-con-
nected, or k = 1 and 71(.#") is abelian, we obtain the following, more readable, sufficient
condition for (A.1) to hold.

Proposition A.2. Assume that i (N') is torsionfree, and that either k > 2 and W is (k —
1)-connected, or k = 1 and 1t1(N') is abelian. Then (A.1) holds.

Let us give examples of some typical situations that illustrate the various assumptions
above.
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Example A.3. Let /' = T? be the 2-dimensional torus and k = 2. Since 12(T?) = {0},
every map f: $> — T2 is nullhomotopic. Therefore, (A.1) trivially holds.

On the other hand, 7t1(T?) = Z? is nontrivial, whence Proposition A.2 does not apply.
Actually, H» (T2 ;Z) = Z, so that the Hurewicz homomorphism is not an isomorphism. It
is nevertheless injective, as it is nothing else but the zero map {0} = 112(T?) — Hy(T?;, 7).

This highlights the fact that the assumptions in Proposition A.2 are more stringent
than the ones of Proposition A.1, and that only the injectivity of hur matters.

One can obtain a less trivial example, where there actually is some topology to be
detected, by taking for instance T? x $2. O

Example A.4. Let # = RP? be the 2-dimensional projective plane and k = 1. Since
m1(RP?) = Z/2Z, there is a homotopically nontrivial smooth map f: $! — RIP?2. On
the other hand, since HcliR(lR]Pz) = {0}, all smooth closed 1-forms w are exact. There-
fore, (A.3) trivially holds true for any pair of maps, and hence (A.1) fails.

The issue here is that H1(RIP?; Z) = 11(RP?) = Z/2Z has torsion. This is actually a
more general phenomenon, since the de Rham cohomology does not see torsion. This
highlights why it is crucial to assume, in Proposition A.1, that the relevant homology
group is torsionfree. |

Example A.5. Let #/ = S! v $! be a bouquet of two circles and k = 1. Strictly speaking,
this is not a manifold, but one can easily work instead with a manifold with the same
relevant properties by considering for instance a torus with two holes.

In this case, we have m1(S$' vV 8§!) = Z +Z # Z? = H(S! v 8';Z). But there is no
injective group morphism Z * Z — Z2. Indeed, if a and b are generators of Z * Z and
g: Z+Z — 7*is amorphism, then ¢(aba='b~!) = g(a) + g(b) — g(a) — g(b) = 0 and thus
g is not injective. In particular, the Hurewicz homomorphism is not injective. The issue
here is that 71(S! v $') is not abelian, while homology groups are always abelian. We
note that this may only arise when k = 1, as 7y is always abelian when k > 2.

On the other hand, if f: $' — 8! v $! realizes the commutator [a,b] = aba~'b~! in
m1(S! v 81), one has

f*w =0,V smooth closed 1-form w on stvs!
Sl

showing that (A.1) fails in this situation. This highlights the importance of the abelian
assumption when k = 1. m]



B Further results

This appendix is devoted to the proof of Lemma 3.37 and an improvement of Theorem
4.1, in the spirit of Bourgain, Brezis, and Nguyen [12].

Proof of Lemma 3.37. We use the same notation as in Sections 3.1 and 3.5. Let ]_‘Z-/ . and ]_’g
be as in the proof of Lemma 3.35. Then

fieo®i=(Eio@)(fi*pe) = (Eio@i) fi= (&0 @i) (f o @) in W (V)

as ¢ — 0. Since ¢; is bi-Lipschitz, this implies that ]_‘i, . — &if inWeP(U;). Convergence
also holds in W** (), since

/ / |(fz-,5(x)—5i(x)f(x))_(f]i(,e(y)—éi(y)f(]/))w 457" (x) A" ()
oy dist (x, y)***F

|7i,g(x)—5i(x)f(x)|” ) P T e
: 2//%\ui /,- dist (x, y)* P dZ° @) X W)+ ie = Cif bysr,

< CeDllf;. = &if lgwuy + If 1o = Eif lhyspy) — O when & — 0.

(In the last inequality, we have used the fact that for ¢ small and any i, supp ?i, . 1S
contained in a fixed compact subset of U’.)

Therefore, when ¢ — 0, we have f . — fin W3P. By (4.1), this implies that f c = f
in BMO N #!. We are now in position to repeat the proof of Lemma 3.35 and find that,

for small ¢, one can define ITo f _, which is Lipschitz and .#’-valued. By Lemma 5.12,
wehaveIlo f, — fin W57, O

We next present an improvement, inspired by [12], of estimate (4.2) in Theorem 4.1.
The setting is the one of Section 4: (a) ./ is a compact k-dimensional Lipschitz manifold
oriented by a finite chart structure {(U;, Vi, ¢;)}ic1; (b) / is a closed manifold; (c) w is a
smooth closed k-form on /#;(d)0 < s <1land 1 < p < oo are such that sp = k; (e) 7 (f)
is the invariant whose existence is proved in Theorem 4.1; (f) 0 is as in Definition 2.10.

Theorem B.1. For 0 < n < 0, there exists a finite constant Cy = C(M, N, w,s,p,n) such
that

1
sensc [ —_— L)
Wi peaxacis-georsny dist (x, )1 (B.1)

Ve WSP(dL; ).
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In order to see that (B.1) is indeed a refinement of (4.2), it suffices to note the obvious
inequalities

1
—— d#Z*(x) dF (y)
//«x,y)ex%w:|f<y>—f(x>|>n} [dist (x, y)]2* /

1 // Lf(x)=fWIP .« k 1 p
< — V7T 42k (x) A (y) < — | f1se -
N7 Wi ypeaxaify)-feosny [dist (x, y)]* =y Flwe

When k > 2 and # = SF, estimate (B.1) is due to Van Schaftingen [63, Theorem 6.2].
For more subtle questions as the range of the 1’s such that (B.1) holds and the optimal
dependence of C; on 1, see Nguyen [55, 56] and [63].

Proof. Let F = F(x, ¢) be as in (4.4), with f. = f:(x) as in (2.9).

Let0 < p < 6 —nand set

hg(x) := inf{e > O:dist (F(x, €), /) 2 6 — B}.

Let ﬁ/; € CZ(R™;R") be such that l:[ﬁ(z) =I1(z), Vz € Js-g. By repeating the proof
of Theorem 4.1 (see the proof of (4.24)), we have

TPla [ ), (B2)

a [hp(x)]x

(Here and in what follows, constants do not depend on f.)

By the proof of (4.30), for a.e. x € .4 we have

6 =B < |F(x, hg(x)) = f(x)]

_ ' (B.3)
p(x, h(x), YIf(y) = f()dFZ (y) + 1.

<

/{ye/%:lf(y)—f(x)bn}

Combining (B.3), (4.5), and (2.13), we have

(6 = B =M (Bry)(0)) < Cr*({y € Biyy(0): If (y) = fF(0)] > n}).

This implies that
1
A7 (y)
/{ye/%:|f<y>—f<x>|>n} [dist (x, y) ]2

C3%k(Bhﬁ(x)(x))
> 5— 8.
- [min(hg(x), diam (ﬂ))]Zk( B-n)

(B.4)
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On the other hand, (3.4) implies that

1 T (Bpy() (%))
[hﬁ(x)]k =t [min(hg(x), diam (M)))2k (B.5)
We obtain (B.1) from (B.2), (B.4) (integrated in x), and (B.5). 0
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