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Introduction

Sobolev maps into manifolds

Let 𝒩 be a smooth compact Riemannian manifold, 𝒩 ⊂ ℝ𝜈. Let ℳ be a smooth compact
Riemannian manifold of dimension m. Let 1 ≤ p < +∞.

Definition

W s,p(ℳ;𝒩) = {u ∈ W s,p(ℳ;ℝ𝜈): u(x) ∈ 𝒩 for a.e. x ∈ ℳ}
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The strong approximation problem

The strong approximation problem

Theorem
The space C∞(ℳ;ℝ) is dense in W1,p(ℳ;ℝ).

We define
H1,p

S (ℳ;𝒩) = C∞(ℳ;𝒩)
W1,p

.

Question

Do we have W1,p(ℳ;𝒩) = H1,p
S (ℳ;𝒩)?
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The strong approximation problem

The strong density theorem

Theorem (Bethuel (1991))

Then, W1,p(𝔹m;𝒩) = H1,p
S (𝔹m;𝒩) if and only if 𝜋⌊p⌋(𝒩) = {0} or p ≥ m.

The case of an arbitrary domain ℳ is known from Hang and Lin (2003). Global
obstructions may arise as well.

This has been extended to W s,p for other values of s by Brezis and Mironescu (0 < s < 1,
2015), Bousquet, Ponce, and Van Schaftingen (s = 2, 3, . . . , 2015), and D. (s > 1 noninteger,
2023) .
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The weak approximation problem: state of the art

The weak approximation problem

We say that (un)n∈ℕ weakly converges to u in W1,p, and we write un ⇀ u, whenever un → u
almost everywhere and

sup
n∈ℕ

ℰ1,p(un ,ℳ) = sup
n∈ℕ

∫
ℳ

|Dun |p < +∞.

Define

H1,p
W (ℳ;𝒩) = {u ∈ W1,p(ℳ;𝒩): there exists (un)n∈ℕ in C∞(ℳ;𝒩) such that un ⇀ u}.

Question

Does it hold that H1,p
W (ℳ;𝒩) = W1,p(ℳ;𝒩)?
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The weak approximation problem: state of the art

A topological obstruction: here we go again?

If 2 < p < 3, then x
|x | ∉ H1,p

W (𝔹3;𝕊2).

Theorem (Bethuel (1991))

If p ∉ ℕ, then H1,p
W (ℳ;𝒩) = H1,p

S (ℳ;𝒩).
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The weak approximation problem: state of the art

A new phenomenon: the case p ∈ ℕ

Unlike for 2 < p < 3, we have x/|x | ∈ H1,2
W (𝔹3;𝕊2).

More generally, we have:
H1,2

S (𝔹3;𝕊2) ⊊ H1,2
W (𝔹3;𝕊2) = W1,2(𝔹3;𝕊2) (Bethuel (1990));

H1,p
W (ℳ;𝒩) = W1,p(ℳ;𝒩) whenever 𝒩 is (p − 1)-connected (Hajłasz (1994));

H1,2
W (ℳ;𝒩) = W1,2(ℳ;𝒩) for more general 𝒩 (Pakzad and Rivière (2003));

H2,2
W (𝔹5;𝕊3) = W2,2(𝔹5;𝕊3) (Hardt and Rivière (2015)).
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The weak approximation problem: state of the art

Obstructions strike back: the analytical obstruction

Theorem (Bethuel (2020))

H1,3
W (𝔹4;𝕊2) ⊊ W1,3(𝔹4;𝕊2)

Global topological obstructions were already known (Hang and Lin (2003)).
Here, the obstruction is local.
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New obstructions to the weak approximation property

Two families of analytical obstructions to the weak approximation
property

Theorem (D. and Van Schaftingen (2024))
For every p ∈ ℕ \ {0, 1}, there exists a compact Riemannian manifold 𝒩 such that, if
dimℳ > p, then

H1,p
W (ℳ;𝒩) ⊊ W1,p(ℳ;𝒩).

Theorem (D. and Van Schaftingen (2024))
For every d ∈ ℕ∗, if dimℳ > 4d − 1, then

H1,4d−1
W (ℳ;𝕊2d) ⊊ W1,4d−1(ℳ;𝕊2d).
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Weak approximation for a finite homotopy group

Weak approximation of mappings into manifold with a finite
homotopy group

Theorem (D. and Van Schaftingen (in preparation))

For every p ∈ ℕ∗, if 𝜋p(𝒩) is finite, then H1,p
W (𝔹m;𝒩) = W1,p(𝔹m;𝒩).

Combining this with a result of Serre, we obtain a complete answer for sphere-valued
maps.

Corollary

For every p ∈ ℕ∗ and ℓ ∈ ℕ∗, we have H1,p
W (𝔹m;𝕊ℓ ) = W1,p(𝔹m;𝕊ℓ ) if and only if either ℓ is

odd or p ≠ 2ℓ − 1.
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Open problems

Some remaining open problems

Give a full characterization of the situations where the weak approximation property
holds.
What happens in W s,p(ℳ;𝒩) for s ≠ 1?
Is it possible to characterize those maps which are weakly approximable, in case the
weak approximation property fails?
And many more!
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Thank you for your attention!
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