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Context: nonlinear functional analysis

Context
Consider maps u ∈ W s,p(ℳ;𝒩), where ℳ and 𝒩 are two compact Riemannian
manifolds, with 𝒩 ⊂ ℝ𝜈 and 0 < s < +∞, 1 ≤ p < +∞.

Some applications:
𝒩 = 𝕊2, ℝℙ2, SO(3)/H, . . . : liquid crystals (connections with harmonic maps);
𝒩 = 𝕊2: ferromagnetism (connected to homogenization problems);
𝒩 = G a Lie group: gauge theories.
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The issue of nonlinearity

In general, usual linear construction for Sobolev functions are not compatible with the
nonlinear constraint that u(x) ∈ 𝒩 for a.e. x ∈ ℳ.

Typical examples:
approximate u with smooth maps by convolution;
extend a trace g ∈ W1−1/p,p(𝜕ℳ;𝒩) to a map defined on ℳ (again convolution);
construct competitors or localize in chart using a cut-off.
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A workaround: the method of singular projection

Introduced by Hardt and Lin (1987), with roots in Federer and Fleming (1960).

Typical statement

Let p < ℓ and let g ∈ W1−1/p,p(𝜕ℳ;𝕊ℓ−1). There exists u ∈ W1,p(ℳ;𝕊ℓ−1) such that tr u = g
and satisfying the estimate

∥Du∥Lp(ℳ) ≤ C |g|W1−1/p,p(𝜕ℳ),

for some constant C > 0 depending only on ℳ, ℓ , and p.
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Estimates for the method of singular projection

Theorem
Let 0 < s < +∞, 1 ≤ p < +∞, ℓ ∈ ℕ \ {0, 1}, and let P : ℝℓ \ {0} → 𝕊ℓ−1 be given by
P(x) = x

|x | . Assume that either s ≥ 1 and sp < ℓ , or 0 < s < 1 and p < ℓ . For every
u ∈ W s,p(ℳ;ℝℓ ) ∩ L∞(ℳ;ℝℓ ) and every 𝛼 > 0,∫

Bℓ
𝛼

|P ◦ (u − a)|pW s,p(ℳ) da ≤ C∥u∥p
W s,p(ℳ),

for some constant C > 0 depending only on s, p, 𝛼, ℳ, and ℓ .

The same estimate holds for general singular projections.
The case s = 1 is due to Hardt and Lin (1987). The case 0 < s < 1 is due to Vincent (2025).
In full generality, the case s > 1 seems to be new (D. 2025).

Antoine Detaille (ETH Zürich) The method of singular projection The 7th of January 2026 5 / 7

Preliminary version – January 7, 2026 – 9:41



A surprising threshold when 0 < s < 1

The applicability of the method of singular projection in the larger regime sp < ℓ when
0 < s < 1 was a folklore question in the harmonic maps community.

Theorem (D. 2025)
Assume that 0 < s < 1 and 1 ≤ p < +∞ are such that sp < ℓ but p ≥ ℓ , and let
P : ℝℓ \ {0} → 𝕊ℓ−1 be given by P(x) = x

|x | .
There exists a map u ∈ W s,p(𝔹ℓ ;ℝℓ ) ∩ L∞(𝔹ℓ ;ℝℓ ) such that P ◦ (u − a) ∉ W s,p for every
a ∈ 𝔹ℓ .

This shows that the threshold p < ℓ is sharp.
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Thank you for your attention!

Antoine Detaille (ETH Zürich) The method of singular projection The 7th of January 2026 7 / 7

Preliminary version – January 7, 2026 – 9:41


