

A surprising threshold for the method of singular projection

Antoine Detaille

ETH Zürich

The 7th of January 2026

Context: nonlinear functional analysis

Context

Consider maps $u \in W^{s,p}(\mathcal{M}; \mathcal{N})$, where \mathcal{M} and \mathcal{N} are two compact Riemannian manifolds, with $\mathcal{N} \subset \mathbb{R}^v$ and $0 < s < +\infty$, $1 \leq p < +\infty$.

Context: nonlinear functional analysis

Context

Consider maps $u \in W^{s,p}(\mathcal{M}; \mathcal{N})$, where \mathcal{M} and \mathcal{N} are two compact Riemannian manifolds, with $\mathcal{N} \subset \mathbb{R}^v$ and $0 < s < +\infty$, $1 \leq p < +\infty$.

Some applications:

Context: nonlinear functional analysis

Context

Consider maps $u \in W^{s,p}(\mathcal{M}; \mathcal{N})$, where \mathcal{M} and \mathcal{N} are two compact Riemannian manifolds, with $\mathcal{N} \subset \mathbb{R}^v$ and $0 < s < +\infty$, $1 \leq p < +\infty$.

Some applications:

- $\mathcal{N} = \mathbb{S}^2, \mathbb{RP}^2, SO(3)/H, \dots$: liquid crystals (connections with harmonic maps);

Context: nonlinear functional analysis

Context

Consider maps $u \in W^{s,p}(\mathcal{M}; \mathcal{N})$, where \mathcal{M} and \mathcal{N} are two compact Riemannian manifolds, with $\mathcal{N} \subset \mathbb{R}^v$ and $0 < s < +\infty$, $1 \leq p < +\infty$.

Some applications:

- $\mathcal{N} = \mathbb{S}^2, \mathbb{RP}^2, SO(3)/H, \dots$: liquid crystals (connections with harmonic maps);
- $\mathcal{N} = \mathbb{S}^2$: ferromagnetism (connected to homogenization problems);

Context: nonlinear functional analysis

Context

Consider maps $u \in W^{s,p}(\mathcal{M}; \mathcal{N})$, where \mathcal{M} and \mathcal{N} are two compact Riemannian manifolds, with $\mathcal{N} \subset \mathbb{R}^v$ and $0 < s < +\infty$, $1 \leq p < +\infty$.

Some applications:

- $\mathcal{N} = \mathbb{S}^2, \mathbb{RP}^2, SO(3)/H, \dots$: liquid crystals (connections with harmonic maps);
- $\mathcal{N} = \mathbb{S}^2$: ferromagnetism (connected to homogenization problems);
- $\mathcal{N} = G$ a Lie group: gauge theories.

The issue of nonlinearity

In general, usual linear construction for Sobolev functions are *not compatible* with the nonlinear constraint that $u(x) \in \mathcal{N}$ for a.e. $x \in \mathcal{M}$.

The issue of nonlinearity

In general, usual linear construction for Sobolev functions are *not compatible* with the nonlinear constraint that $u(x) \in \mathcal{N}$ for a.e. $x \in \mathcal{M}$.

Typical examples:

The issue of nonlinearity

In general, usual linear construction for Sobolev functions are *not compatible* with the nonlinear constraint that $u(x) \in \mathcal{N}$ for a.e. $x \in \mathcal{M}$.

Typical examples:

- approximate u with smooth maps by convolution;

The issue of nonlinearity

In general, usual linear construction for Sobolev functions are *not compatible* with the nonlinear constraint that $u(x) \in \mathcal{N}$ for a.e. $x \in \mathcal{M}$.

Typical examples:

- approximate u with smooth maps by convolution;
- extend a trace $g \in W^{1-1/p,p}(\partial\mathcal{M}; \mathcal{N})$ to a map defined on \mathcal{M} (again convolution);

The issue of nonlinearity

In general, usual linear construction for Sobolev functions are *not compatible* with the nonlinear constraint that $u(x) \in \mathcal{N}$ for a.e. $x \in \mathcal{M}$.

Typical examples:

- approximate u with smooth maps by convolution;
- extend a trace $g \in W^{1-1/p,p}(\partial\mathcal{M}; \mathcal{N})$ to a map defined on \mathcal{M} (again convolution);
- construct competitors or localize in chart using a cut-off.

A workaround: the method of singular projection

Introduced by Hardt and Lin (1987), with roots in Federer and Fleming (1960).

A workaround: the method of singular projection

Introduced by Hardt and Lin (1987), with roots in Federer and Fleming (1960).

Typical statement

Let $p < \ell$ and let $g \in W^{1-1/p, p}(\partial \mathcal{M}; \mathbb{S}^{\ell-1})$. There exists $u \in W^{1, p}(\mathcal{M}; \mathbb{S}^{\ell-1})$ such that $\text{tr } u = g$ and satisfying the estimate

$$\|Du\|_{L^p(\mathcal{M})} \leq C|g|_{W^{1-1/p, p}(\partial \mathcal{M})},$$

for some constant $C > 0$ depending only on \mathcal{M} , ℓ , and p .

Estimates for the method of singular projection

Theorem

Let $0 < s < +\infty$, $1 \leq p < +\infty$, $\ell \in \mathbb{N} \setminus \{0, 1\}$, and let $P: \mathbb{R}^\ell \setminus \{0\} \rightarrow \mathbb{S}^{\ell-1}$ be given by $P(x) = \frac{x}{|x|}$. Assume that either $s \geq 1$ and $sp < \ell$, or $0 < s < 1$ and $p < \ell$. For every $u \in W^{s,p}(\mathcal{M}; \mathbb{R}^\ell) \cap L^\infty(\mathcal{M}; \mathbb{R}^\ell)$ and every $\alpha > 0$,

$$\int_{B_\alpha^\ell} |P \circ (u - a)|_{W^{s,p}(\mathcal{M})}^p da \leq C \|u\|_{W^{s,p}(\mathcal{M})}^p,$$

for some constant $C > 0$ depending only on $s, p, \alpha, \mathcal{M}$, and ℓ .

The same estimate holds for *general singular projections*.

The case $s = 1$ is due to Hardt and Lin (1987). The case $0 < s < 1$ is due to Vincent (2025). In full generality, the case $s > 1$ seems to be new (D. 2025).

A surprising threshold when $0 < s < 1$

The applicability of the method of singular projection in the larger regime $sp < \ell$ when $0 < s < 1$ was a folklore question in the harmonic maps community.

A surprising threshold when $0 < s < 1$

The applicability of the method of singular projection in the larger regime $sp < \ell$ when $0 < s < 1$ was a folklore question in the harmonic maps community.

Theorem (D. 2025)

Assume that $0 < s < 1$ and $1 \leq p < +\infty$ are such that $sp < \ell$ but $p \geq \ell$, and let

$P: \mathbb{R}^\ell \setminus \{0\} \rightarrow \mathbb{S}^{\ell-1}$ be given by $P(x) = \frac{x}{|x|}$.

There exists a map $u \in W^{s,p}(\mathbb{B}^\ell; \mathbb{R}^\ell) \cap L^\infty(\mathbb{B}^\ell; \mathbb{R}^\ell)$ such that $P \circ (u - a) \notin W^{s,p}$ for every $a \in \mathbb{B}^\ell$.

This shows that the threshold $p < \ell$ is sharp.

Thank you for your attention!