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Abstract

Given a compact manifold 𝒩 embedded into ℝ𝜈 and a projection 𝑃 that retracts
ℝ𝜈 except a singular set of codimension ℓ onto 𝒩 , we investigate the maximal range
of parameters 𝑠 and 𝑝 such that the projection 𝑃 can be used to turn an ℝ𝜈-valued
𝑊 𝑠,𝑝 map into an 𝒩-valued𝑊 𝑠,𝑝 map. Devised by Hardt and Lin with roots in the
work of Federer and Fleming, the method of projection is known to apply in 𝑊1,𝑝

if and only if 𝑝 < ℓ , and has been extended in some special cases to more general
values of the regularity parameter 𝑠. As a first result, we prove in full generality
that, when 𝑠 ≥ 1, the method of projection can be applied in the whole expected
range 𝑠𝑝 < ℓ .

When 0 < 𝑠 < 1, the method of projection was only known to be applicable when
𝑝 < ℓ , a more stringent condition than 𝑠𝑝 < ℓ . As a second result, we show that,
somehow surprisingly, the condition 𝑝 < ℓ is optimal, by constructing, for every
0 < 𝑠 < 1 and 𝑝 ≥ ℓ , a bounded 𝑊 𝑠,𝑝 map into ℝℓ whose singular projections onto
the sphere 𝕊ℓ−1 all fail to belong to𝑊 𝑠,𝑝 .

As a byproduct of our method, a similar conclusion is obtained for the closely
related method of almost retraction, devised by Hajłasz, for which we also prove a
more stringent threshold of applicability when 0 < 𝑠 < 1.
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1 Introduction

This paper is concerned with the implementation of the so-called method of singular
projection in the context of Sobolev spaces of mappings with values into a compact man-
ifold. More precisely, we let ℳ and 𝒩 be compact Riemannian manifolds, where ℳ has
dimension𝑚 and may have a boundary, and 𝒩 is isometrically embedded into ℝ𝜈. This
latter assumption is without loss of generality by virtue of the Nash isometric embed-
ding theorem [Nas54, Nas56]. We work in the Sobolev space 𝑊 𝑠,𝑝(ℳ;𝒩) consisting of
all maps 𝑢 ∈𝑊 𝑠,𝑝(ℳ;ℝ𝜈) such that 𝑢(𝑥) ∈ 𝒩 for almost every 𝑥 ∈ ℳ. This in particular
comprises the case where the domain is a smooth bounded open subset 𝛺 ⊂ ℝ𝑚 , by
letting ℳ = 𝛺.

Although 𝑊 𝑠,𝑝(ℳ;𝒩) is a metric subspace of the linear Sobolev space 𝑊 𝑠,𝑝(ℳ;ℝ𝜈),
the nonlinear constraint imposed by 𝒩 prevents it from being a linear space. Even
more dramatically, most of the linear constructions that are usual when working with
classical Sobolev spaces cannot be implemented as such in the presence of the manifold
constraint.

As a model example for our discussion, let us consider the extension of traces problem.
It is well-known [Gag57] that every 𝑢 ∈ 𝑊1−1/𝑝,𝑝(ℳ) is the trace of a 𝑊1,𝑝 function
on ℳ × (0, 1), that is, 𝑢 can be extended to a function 𝑈 ∈ 𝑊1,𝑝(ℳ × (0, 1)), such
that trℳ𝑈 = 𝑢. We denote by 𝐵𝑚𝑟 (𝑎) the open ball with center 𝑎 and radius 𝑟 in
ℝ𝑚 , and we use the notation 𝔹𝑚 = 𝐵𝑚1 (0) for the unit ball. The usual construction of
the extension 𝑈 relies on a convolution product, and essentially consists in defining
𝑈(𝑥, 𝑡) = 𝜑𝑡 ∗ 𝑢(𝑥) in the Euclidean setting, where 𝜑 ∈ 𝐶∞

c (𝔹𝑚) is a standard mollifying
kernel — with some technical adaptations to deal with points near the boundary. In
particular, this construction shows that the extension may even be taken to be smooth in
ℳ × (0, 1). However, the convolution product being merely an averaging process, even
if 𝑢 ∈ 𝒩 almost everywhere on ℳ, 𝑈 need not take its values on 𝒩 almost everywhere
on ℳ × (0, 1). Therefore, one cannot deduce that every 𝑢 ∈ 𝑊1−1/𝑝,𝑝(ℳ;𝒩) is the trace
of a mapping 𝑈 ∈ 𝑊1,𝑝(ℳ × (0, 1);𝒩) as a direct consequence of the linear result, and
not even of its usual proof.

If there would exist a smooth map Π : ℝ𝜈 → 𝒩 such that Π|𝒩 = id𝒩, then one could
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bring back to the linear case relying on the continuity of the composition operator, as
Π ◦ 𝑈 would provide a 𝑊1,𝑝 extension of 𝑢 on ℳ × (0, 1). However, there is no hope
for such a globally defined smooth retraction onto 𝒩 in the general case: if 𝒩 is a
compact manifold without boundary, then it can be shown that such a map Π never
exists. However, in some special situations, one may circumvent this issue by working
instead with a singular projection.

Let us illustrate the key idea on the model case where 𝒩 = 𝕊ℓ−1 ⊂ ℝℓ , with ℓ ≥ 2,
following the work of Hardt and Lin [HL87]. In this case, one may consider the map
𝑃 : ℝℓ \ {0} → 𝕊ℓ−1 defined by 𝑃(𝑥) = 𝑥

|𝑥 | , which satisfies 𝑃|𝕊ℓ−1 = id𝕊ℓ−1 . The map Π is a
retraction, singular at the origin, satisfying the important estimate

|D𝑗𝑃(𝑥)| ≤ 𝐶 𝑗
1
|𝑥 | 𝑗

for every 𝑥 ∈ ℝℓ \ {0}, (1.1)

where 𝐶 𝑗 > 0 is a constant depending only on 𝑗. A natural idea would be to conclude by
considering the map 𝑃 ◦𝑈 . However, this attempt faces two important issues: (i) it may
happen that𝑈 takes the value 0 on a large set, in which case 𝑃 ◦𝑈 would not be defined
on this set; (ii) even if 𝑈 ≠ 0 almost everywhere, so that 𝑃 ◦ 𝑈 is well-defined almost
everywhere, one cannot apply standard results about the continuity of the composition
operator to deduce that 𝑃 ◦𝑈 ∈𝑊1,𝑝 , because of the singularity of 𝑃 at 0.

To overcome these difficulties, one relies on the following ingenious averaging argu-
ment, which takes its roots in the seminal work by Federer and Fleming [FF60]. Given
𝑎 ∈ 𝔹ℓ , consider the map 𝑃 ◦ (𝑈 − 𝑎). In what follows, we assume for simplicity that
ℳ = 𝔹ℓ−1. By Sard’s lemma, for almost every 𝑎 ∈ 𝔹ℓ ,𝑈−1({𝑎}) is a finite union of points
in 𝔹ℓ−1 × (0, 1), so that 𝑃 ◦ (𝑈 − 𝑎) is defined almost everywhere. Let us give an estimate
of its weak derivative. By the chain rule, we know that

|D(𝑃 ◦ (𝑈 − 𝑎))(𝑥, 𝑡)| ≲ D𝑈(𝑥, 𝑡)
|𝑈(𝑥, 𝑡) − 𝑎 | . (1.2)

The key idea behind the averaging argument is to first integrate with respect to 𝑎: if
𝑝 < ℓ , one has∫

𝔹ℓ

|D(𝑃 ◦ (𝑈 − 𝑎))(𝑥)|𝑝 d𝑎 ≲ |D𝑈(𝑥, 𝑡)|𝑝
∫
𝔹ℓ

1
|𝑈(𝑥, 𝑡) − 𝑎 |𝑝 d𝑎

≤ |D𝑈(𝑥, 𝑡)|𝑝
∫
𝐵ℓ2

1
|𝑎 |𝑝 d𝑎 ≲ |D𝑈(𝑥, 𝑡)|𝑝 , (1.3)

where we have used the fact that |𝑈(𝑥, 𝑡)| ≤ 1 for every (𝑥, 𝑡) ∈ 𝔹ℓ−1 × (0, 1). Integrating

3



in (𝑥, 𝑡) and using Tonelli’s theorem, we find∫
𝔹ℓ

|D(𝑃 ◦ (𝑈 − 𝑎))|𝑝
𝐿𝑝(𝔹ℓ−1×(0,1)) d𝑎 ≲ |D𝑈 |𝑝

𝐿𝑝(𝔹ℓ−1×(0,1)).

This implies the existence of a measurable set 𝐴 ⊂ 𝔹ℓ of positive measure such that, for
every 𝑎 ∈ 𝐴,

|D(𝑃 ◦ (𝑈 − 𝑎))|𝑝
𝐿𝑝(𝔹ℓ−1×(0,1)) ≲ |D𝑈 |𝑝

𝐿𝑝(𝔹ℓ−1×(0,1)).

One concludes by observing that 𝑃(· − 𝑎)|𝕊ℓ−1 is a smooth diffeomorphism on 𝕊ℓ−1, and
hence (𝑃(· − 𝑎)−1)|𝕊ℓ−1 ◦ (𝑃 ◦ (𝑈 − 𝑎)) is a𝑊1,𝑝(𝔹ℓ−1 × (0, 1);𝕊ℓ−1) map whose trace on 𝔹ℓ

coincides with 𝑢.

In the above example, the important features of the singular projection 𝑥 ↦→ 𝑥
|𝑥 | onto

𝕊ℓ−1 were that it is smooth outside of a small singular set, and that the rate of blow-up of
its derivatives when approaching the singular set is suitably controlled. This motivates
the following more general definition of a singular projection.

Definition 1.1. Let ℓ ∈ {2, . . . , 𝜈}. An ℓ -singular projection onto 𝒩 is a smooth map 𝑃 : ℝ𝜈 \
𝛴 → 𝒩 such that 𝑃|𝒩 = id𝒩 and

|D𝑗𝑃(𝑥)| ≤ 𝐶 𝑗
1

dist (𝑥,𝛴)𝑗
for every 𝑥 ∈ ℝ𝜈 \ 𝛴 and 𝑗 ∈ ℕ∗

for some constant 𝐶 𝑗 > 0 depending on 𝑗, where 𝛴 ⊂ ℝ𝜈 \𝒩 is a union of closedly embedded
(𝜈 − ℓ )-submanifolds of ℝ𝜈.

The reader may wonder which target manifolds 𝒩 do admit an ℓ -singular projection
for some ℓ . A necessary an sufficient condition for the existence of a singular projection,
depending only on the topology of 𝒩, is given by Proposition 2.1. Other important
properties of singular projections shall be recalled in Section 2. For the moment, let us
simply note that the map 𝑃 : ℝℓ \ {0} → 𝕊ℓ−1, 𝑃(𝑥) = 𝑥

|𝑥 | defined above is indeed an
ℓ -singular projection, with singular set 𝛴 = {0}.

The illustrative argument presented above can be repeated mutatis mutandis for a
general singular projection, hence showing that the method of singular projection can
be implemented in full generality in𝑊1,𝑝 , as soon as 𝒩 admits an ℓ -singular projection
and 𝑝 < ℓ . The argument may also easily be adapted to cover higher order spaces
𝑊 𝑘,𝑝 . In this setting, the main difference is that the right-hand side of (1.2), obtained
via the chain rule, will involve a term of the form 1

dist (𝑈(𝑥,𝑡)−𝑎,𝛴)𝑘
, so that, to ensure

the finiteness of the last integral in the corresponding version of (1.3), the assumption

4



on the parameters will be 𝑘𝑝 < ℓ . Similarly, for fractional order spaces, the expected
assumption on the parameters to be satisfied to ensure the applicability of the method
of singular projection is 𝑠𝑝 < ℓ . Our first main result shows that this is indeed the case
in the range 𝑠 ≥ 1.

Theorem 1.2. Let 𝑃 : ℝ𝜈 \ 𝛴 → 𝒩 be an ℓ -singular projection. If 𝑠 ≥ 1 and 𝑠𝑝 < ℓ , then for
every map 𝑢 ∈𝑊 𝑠,𝑝(ℳ;ℝ𝜈) ∩ 𝐿∞(ℳ;ℝ𝜈) and every 𝛼 > 0, we have∫

𝐵𝜈
𝛼

|𝑃 ◦ (𝑢 − 𝑎)|𝑝
𝑊 𝑠,𝑝(ℳ) d𝑎 ≤ 𝐶∥𝑢∥𝑝

𝑊 𝑠,𝑝(ℳ),

for some constant 𝐶 > 0 depending on 𝑠, 𝑝, ℳ, 𝑃, 𝛼, and ∥𝑢∥𝐿∞(ℳ).

We observe that the assumption 𝑠𝑝 < ℓ cannot be relaxed. Indeed, in the model
situation where ℳ = 𝔹ℓ , 𝒩 = 𝕊ℓ−1, and 𝑃(𝑥) = 𝑥

|𝑥 | , if one considers the map 𝑢(𝑥) = 𝑥,
then it is easily seen that 𝑃 ◦ (𝑢 − 𝑎) belongs to𝑊 𝑠,𝑝(𝔹ℓ ) for no 𝑎 ∈ 𝔹ℓ in case 𝑠𝑝 ≥ ℓ .

When 𝑠 ≥ 1, Theorem 1.2 establishes the applicability of the method of singular pro-
jection in the full expected range. This result is in the spirit of classical results concerning
superposition operators, see e.g. [BM01] and the references therein, the main difference
here being that the map with which we compose is allowed to have singularities.

The range 0 < 𝑠 < 1, on the contrary, is source of additional difficulties. Indeed, it
is well-known to experts, and can easily be shown, for instance, by adapting the proof
of Theorem 1.2, that the method of singular projection can be implemented under the
assumption that 𝑝 < ℓ ; see e.g. [Vin25, Proof of Theorem 2.11] for a similar argument.
This assumption is more stringent than the expected assumption 𝑠𝑝 < ℓ .

Two hints supporting the conjecture that the method of singular projection can be
implemented whenever 𝑠𝑝 < ℓ also when 0 < 𝑠 < 1 are the following. (i) In many
other problems related to Sobolev mappings to manifolds, the product 𝑠𝑝 is the right
quantity to consider in the full range 0 < 𝑠 < +∞. A typical example is given by the
local obstruction to the strong density of smooth maps in 𝑊 𝑠,𝑝(ℳ;𝒩), which comes
from the nontriviality of 𝜋⌊𝑝⌋(𝒩) when 𝑠 = 1 [SU83, Bet91], and from the nontriviality
of 𝜋⌊𝑠𝑝⌋(𝒩) when 0 < 𝑠 < 1 [BM15]. (ii) If 𝑢 ∈ 𝑊 𝑠,𝑝(𝔹ℓ ;𝔹ℓ ) is given by 𝑢(𝑥) = 𝑥,
which is the model example to show that the condition 𝑠𝑝 < ℓ cannot be improved, then
𝑃 ◦ (𝑢 − 𝑎) = 𝑢−𝑎

|𝑢−𝑎 | ∈ 𝑊
𝑠,𝑝(𝔹ℓ ;𝕊ℓ−1) whenever 𝑠𝑝 < ℓ , and the corresponding estimate

holds. This can be shown either by interpolation, see e.g. [BM21, Lemma 15.12], or by
a direct argument, see e.g. [VS19, Lemma 3.7]. Although this is a very special Sobolev
map, it could nevertheless be thought of as somehow representative of the general
case, as any smooth map essentially looks like the identity locally on every affine space
normal to one of its level sets.

Our second main result shows that, somehow surprisingly, the assumption 𝑝 < ℓ is
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optimal in the range 0 < 𝑠 < 1 to ensure the applicability of the method of singular
projection, already in the model case of the projection 𝑃 : ℝℓ \ {0} → 𝕊ℓ−1 given by
𝑃(𝑥) = 𝑥

|𝑥 | .

Theorem 1.3. Assume that 0 < 𝑠 < 1 and 1 ≤ 𝑝 < +∞ are such that 𝑠𝑝 < ℓ but 𝑝 ≥ ℓ , and let
𝑃 : ℝℓ \{0} → 𝕊ℓ−1 be given by 𝑃(𝑥) = 𝑥

|𝑥 | . There exists a map 𝑢 ∈𝑊 𝑠,𝑝(𝔹ℓ ;ℝℓ )∩𝐿∞(𝔹ℓ ;ℝℓ )
such that 𝑃 ◦ (𝑢 − 𝑎) ∉𝑊 𝑠,𝑝 for every 𝑎 ∈ 𝔹ℓ .

The proof of Theorem 1.3 shall be given in Section 4. However, let us already briefly
give an intuition about why the 𝑊 𝑠,𝑝 seminorm with 𝑠 < 1 is sensitive to the threshold
𝑝 < ℓ rather than 𝑠𝑝 < ℓ . For this purpose, let us consider the composition of a 𝑊 𝑠,𝑝

map 𝑢 with a (globally defined, without singular set) map 𝐹, with Lipschitz constant
equal to 𝐿 > 0. A straightforward estimate on the numerator appearing in the Gagliardo
seminorm shows that

|𝐹 ◦ 𝑢 |𝑝
𝑊 𝑠,𝑝 ≤ 𝐿𝑝 |𝑢 |𝑝

𝑊 𝑠,𝑝 .

Moreover, this estimate is optimal, as can be seen by taking 𝐹 to be an affine map.
Therefore, the power that appears in this estimate for the composition with a Lipschitz
map is indeed 𝑝, and not 𝑠𝑝.

This observation will be at the heart of our proof of Theorem 1.3. Namely, we
will start from the fact that, if a map 𝑢 takes two values 𝑐+, 𝑐− ∈ 𝔹ℓ on two balls of
fixed radius, and if 𝑐+ and 𝑐− are close to the projection point 𝑎, then this results in a
multiplication of the contribution of the associated region to the Gagliardo seminorm
by a factor dist (𝑐+ , 𝑐−)−𝑝 . Gluing together several such maps, for some suitably chosen
pairs of points 𝑐+ and 𝑐−, one is then able to construct a 𝑊 𝑠,𝑝 map whose energy will
be dramatically increased after composition with a singular projection for any choice of
the point 𝑎. Making such a construction in a careful way and providing the associated
estimates on how the singular projection increases the Sobolev energy then allows to
conclude via a nonlinear uniform boundedness principle; see [MVS19]. We note that, as
a byproduct of the use of this nonlinear uniform boundedness principle, we actually
obtain that maps 𝑢 as in the conclusion of Theorem 1.3 are even dense in𝑊 𝑠,𝑝(𝔹ℓ ;ℝℓ ).

This idea can also be adapted to prove analogously a more stringent condition than
expected for the applicability of another closely related method, namely the method of
almost retraction. In order to keep this introduction focused on the method of singular
projection, we postpone further explanations on this matter to the end of this text, in
Section 5.

We conclude this introduction with a brief survey of known applications of the
method of projection, to motivate its study.
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Extension of traces. As we mentioned in our introductory example, the first use of
the method of singular projection in the context of mappings to manifolds goes back
to the work by Hardt and Lin [HL87], where it was used to obtain extension of traces
results preserving the manifold constraint. In Section 3, we will show that, when
𝑠 + 1

𝑝 ≥ 1, the existence of an ℓ -singular projection onto 𝒩 always implies that every

map in 𝑊 𝑠,𝑝(𝜕ℳ;𝒩) is the trace of a map in 𝑊 𝑠+ 1
𝑝 ,𝑝(ℳ;𝒩) as soon as 𝑠𝑝 + 1 < ℓ and 𝑠

is not an integer; see Theorem 3.2.
Although not coming as a surprise, this result is, to the best of our knowledge, the first

extension result in higher order Sobolev spaces of mappings, that is, when 𝑠 > 1 − 1
𝑝 .

In view of Proposition 2.1, this approach applies to ⌊𝑠𝑝⌋-connected targets 𝒩. When
𝑠 = 1 − 1

𝑝 — and thus ⌊𝑠𝑝⌋ = ⌊𝑝 − 1⌋ — an important amount of research has been
devoted to the study of the extension of traces problem for mappings into manifolds.
Hardt and Lin [HL87], and Bethuel and Demengel [BD95] have shown that the vanishing
of 𝜋⌊𝑝−1⌋(𝒩) is necessary to ensure that the extension of traces holds, due to the presence
of a topological obstruction. It has also been shown by Bethuel [Bet14] that, if 𝜋 𝑗(𝒩) is
infinite for some 1 ≤ 𝑗 ≤ ⌊𝑝 − 1⌋, then an analytical type obstruction to the extension of
traces arises; see also the work of Mironescu and Van Schaftingen [MVS21]. This left
open the case where 𝜋⌊𝑝−1⌋(𝒩) = {0} and all 𝜋 𝑗(𝒩) with 1 ≤ 𝑗 < ⌊𝑝 − 1⌋ are finite but at
least one of them is nontrivial. This missing case was solved recently by Van Schaftingen
in a groundbreaking contribution [VS24], which showed that the two above mentioned
obstructions are the only ones: if 𝜋⌊𝑝−1⌋(𝒩) = {0} and all 𝜋 𝑗(𝒩) with 1 ≤ 𝑗 < ⌊𝑝 − 1⌋
are finite, then the extension of traces holds when ℳ = 𝔹𝑚 . The case where ℳ has
nontrivial topology is more involved, as global topological obstructions may arise, and
we refer the reader to [VS24] for more details on this matter.

This raises the following open problem: is it true that the extension of traces holds
if and only if 𝜋⌊𝑠𝑝⌋(𝒩) = {0} and all 𝜋 𝑗(𝒩) with 1 ≤ 𝑗 < ⌊𝑠𝑝⌋ are finite in the whole
range 0 < 𝑠 < +∞ when 𝑠 is not an integer? Here, we are only able to settle the more
restrictive case where 𝒩 is ⌊𝑠𝑝⌋-connected. Moreover, the case where 𝑠 < 1− 1

𝑝 remains
completely open, even under this more restrictive assumption, due to the failure of the
method of projection given by Theorem 1.3.

Strong density of almost smooth maps Another widespread use of the method of
singular projection is related to the so-called strong density problem. A well-known
striking fact when studying Sobolev spaces of mappings is that 𝐶∞(ℳ;𝒩) need not
be dense in 𝑊 𝑠,𝑝(ℳ;𝒩) [SU83]. However, it has been established by Bethuel in the
seminal contribution [Bet91] in the case 𝑠 = 1, and later on extended to the full range
0 < 𝑠 < +∞ [BPVS15, BM15, Det23], that one obtains a dense class in 𝑊 𝑠,𝑝(ℳ;𝒩) by
considering instead the class of mappings 𝑢 ∈𝑊 𝑠,𝑝(ℳ;𝒩) that are smooth outside of a
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finite union of (𝑚 − ⌊𝑠𝑝⌋ − 1)-dimensional submanifolds of ℳ.
The proof of this fact is technically involved, but in the special situation where the

target manifold 𝒩 admits an ℓ -singular projection with 𝑠𝑝 < ℓ , the proof can be con-
siderably simplified by relying on the method of singular projection. Such an idea was
already present in the earlier work by Bethuel and Zheng [BZ88], and was later on imple-
mented by Escobedo [Esc88], Rivière [Riv00], Bourgain, Brezis, and Mironescu [BBM05],
Bousquet [Bou07], and Bousquet, Ponce, and Van Schaftingen [BPVS14]. For closely re-
lated directions of research, see also the work by Hajłasz [Haj94] 𝑠 = 1, and its extension
to 𝑠 ≥ 1 [BPVS13], where a method of almost projection was implemented; see Section 5
for more details and a study of the case 0 < 𝑠 < 1. The full range of applicability of the
method of singular projection in the study of the strong density problem was obtained
in [Det25].

Theorem 1.2 dealing with the projection of one fixed map 𝑢 ∈ 𝑊 𝑠,𝑝(ℳ;𝒩), it cannot
be used as such to obtain strong density results for almost smooth maps. However,
as we shall see in Section 3, the proof of Theorem 1.2 can be readily adapted to yield a
variant suited for sequences; see Theorem 3.3. Using this variant, we shall revisit [Det25,
Theorem 2.4] in the range 𝑠 ≥ 1; see Corollary 3.4.

In the two previous problems, the method of projection was applied to functions
that arise from mappings taking values into the target manifold 𝒩, for instance via a
convolution procedure. However, there are some instances where one might be willing
to project a more general function with values into the ambient space ℝ𝜈. We briefly
explain, with very few details, some such instances.

Weak density of smooth maps In [PR03], Pakzad and Rivière proved that, for a large
class of target manifolds 𝒩, any 𝑢 ∈𝑊1,2(ℳ;𝒩) can be weakly approximated by smooth
mappings. The model situation in their work is the case where 𝒩 is simply connected
— we note that, in this special situation, the weak density of smooth maps was already
known via the method of almost projection introduced by Hajłasz [Haj94], and over which
we shall come back in Section 5. In this case, a crucial step in their argument is to
be able to project the map 𝑢 to the 2-dimensional skeleton 𝒩

2 of 𝒩, obtaining a map
𝑢2 ∈𝑊1,2(ℳ;𝒩2). Then, they could rely on the fact that, for a simply connected compact
manifold 𝒩, the skeleton 𝒩

2 has a quite simple topology: it is homotopically equivalent
to a finite bouquet of spheres.

In this situation, similarly to the one studied here, there exists a map 𝑃 that retracts
almost all 𝒩, with a singular set of codimension 3, to the 2-skeleton 𝒩

2. The aforemen-
tioned map 𝑢2 is constructed by applying the counterpart of Theorem 1.2 in this setting
(with 𝑠 = 1) to the map 𝑢 with the singular retraction 𝑃.
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In view of Theorem 1.2, there is hope that the approach by Pakzad and Rivière can be
extended to obtain weak approximation by smooth maps in 𝑊 𝑠,𝑝(ℳ;𝒩) when 𝑠𝑝 = 2,
𝑠 ≥ 1, and 𝒩 is, for instance, simply connected — although we shall not attempt to
carry on this task in the present work, as it would require a whole paper on its own.
However, Theorem 1.3 suggests that, in the range 0 < 𝑠 < 1, the approach would require
substantial modifications.

The singular set of Sobolev mappings As we already explained, even though smooth
mappings are in general not dense in the space 𝑊 𝑠,𝑝(ℳ;𝒩), one nevertheless has at
hand a convenient dense class provided by those 𝑊 𝑠,𝑝(ℳ;𝒩) that are smooth outside
of a singular set of dimension 𝑚 − ⌊𝑠𝑝⌋ − 1. A question that has received a lot of interest
is whether this singular set can be given a robust meaning so that it passes to the limit,
allowing one to define the singular set of any 𝑊 𝑠,𝑝(ℳ;𝒩) map. The hope behind this
endeavor is that the singular set 𝑆𝑢 of a given map 𝑢 ∈𝑊 𝑠,𝑝(ℳ;𝒩) would then encode
the obstruction to approximate 𝑢 by smooth maps, and be so that 𝑆𝑢 = 0 if and only if
𝑢 is a strong limit of smooth mappings.

Several directions of research have been pursued to attempt tackling this problem,
mainly in the model case 𝑠 = 1. We notably mention the study of the Jacobian, see
e.g. [BCL86, Bet90, BCDH91, ABO03, BBM05, Bou07, BM14, Muc24], the development
of Cartesian currents by Giaquinta, Modica, Souček, and collaborators, culminating at the
monograph [GMS98a, GMS98b], and the introduction of the notion of scans by Hardt
and Rivière [HR03, HR08].

In [PR03], Pakzad and Rivière suggested to view the singular set of a Sobolev map as
a flat chain with values into the group 𝜋⌊𝑝⌋(𝒩), using the language of geometric measure
theory. More specifically, they were able to define a robust notion of singular set for
any 𝒩-valued 𝑊1,𝑝 map whenever the target is (⌊𝑝⌋ − 1)-connected, under the extra
assumption that either ⌊𝑝⌋ = 1 or ⌊𝑝⌋ = 𝑚 − 1, which was required because of their use
of a result from geometric measure theory which is not available in full generality.

In [CO19], Canevari and Orlandi removed this extra assumption and handled the
case where 𝒩 is (⌊𝑝⌋ − 1)-connected in full generality. The key idea at the core of their
reasoning involves defining the singular set of any map 𝑢 ∈𝑊1,𝑝(ℳ;ℝ𝜈), non-necessarily
𝒩-valued, by retracting 𝑢 to 𝒩 using the method of singular projection. In particular,
if 𝑢 is already 𝒩-valued, their notion of singular set coincides with the one defined by
Pakzad and Rivière in [PR03].

Therefore, this features another instance where it is crucial to be able to apply the
method of singular projection to any ℝ𝜈-valued Sobolev map, not necessarily obtained
from an 𝒩-valued map for example by convolution.

9



Regularity of harmonic maps Among the research fields which are tightly connected
to the study of Sobolev mappings to manifolds and which make intensive use of the
results and techniques that the latter provides, is the study of harmonic mappings. Such
mappings are defined as minimizers of the Dirichlet energy among all mappings taking
their values into a given target manifold. Challenging questions in this area of research
pertain to the uniqueness, regularity, or stability of the minimizers. Here also, the
method of projection has been used several times in a crucial way, notably to provide
suitable competitors for the Dirichlet energy.

The typical situation is the following. One first constructs a map, for instance by
performing the harmonic extension of a manifold-valued map defined on the boundary
of some ball, or by gluing together two manifold-valued maps via a cutoff procedure.
The map obtained this way need not be a competitor for a Dirichlet problem under
constraint, as it need not take its values into the prescribed target. One then has to
correct this issue by projecting the aforementioned map back to the manifold through a
singular projection, hence obtaining an admissible competitor.

Such an approach was implemented for instance by Hardt and Lin [HL87], using
a gluing by cutoff construction to obtain compactness of minimizers, or by Hardt,
Kinderlehrer, and Lin [HKL86], who obtained energy estimates for minimizers on balls
relying on competitors built as projections of harmonic extensions from the boundary.
We also refer the reader to [MMS18] for a survey of such problems, and to [Gas16] for
results in higher order spaces and [Vin25] for results in fractional Sobolev spaces.

2 Singular projections

In this short section, we collect some properties of singular projections that will
be useful for us in the sequel. We first recall the following characterization of those
manifolds 𝒩 that admit an ℓ -singular projection.

Proposition 2.1. The manifold 𝒩 admits an ℓ -singular projection if and only if it is (ℓ −
2)-connected.

We refer the reader e.g. to [Det25, Lemmas 2.2 and 2.3] for a proof of this result.
We also recall the following lemma, which is a consequence of Sard’s theorem and

the submersion theorem, and which provides the structure of the singular set of the
projection of a smooth map.

Lemma 2.2. Let 𝑢 ∈ 𝐶∞(ℳ;ℝ𝜈) and let 𝛴 be a finite union of (𝜈− ℓ )-submanifolds of ℝ𝜈. For
almost every 𝑎 ∈ ℝ𝜈, the set 𝑣−1(𝛴 + 𝑎) is a finite union of (𝑚 − ℓ )-submanifolds of ℳ, one for
each submanifold constituting 𝛴 — or the empty set if ℓ > 𝑚.
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We refer the reader e.g. to [Det25, Lemma 2.7(i)] for a proof of this lemma. The use-
fulness of Lemma 2.2 in our work is twofold. First, we shall combine it with Lemma 2.3
below to deduce the Sobolev regularity of the projection we construct in the case where
the projected map is smooth.

Lemma 2.3. Let 𝑆 ⊂ ℳ be a closed set such that ℋ𝑚−1(𝑆) = 0, where ℋ
𝑚−1 denotes the

(𝑚 − 1)-dimensional Hausdorff measure. If 𝑢 ∈ 𝐶∞(ℳ \ 𝑆) is such that 𝑢 ∈ 𝐿𝑝(ℳ) and
D𝑢 ∈ 𝐿𝑝(ℳ), then 𝑢 ∈𝑊1,𝑝(ℳ).

We refer the reader e.g. to [Pon16, Proposition 4.18], or to [BM21, Lemma 1.10] and
the references therein.

Second, Lemma 2.2 ensures that, when the projected map is smooth, then its projection
belongs to a suitable class of almost smooth maps. To state this more precisely, we recall
the definition of the class ℛ𝑠,𝑝(ℳ;𝒩) as the class of those maps 𝑢 ∈ 𝑊 𝑠,𝑝(ℳ;𝒩) that
are smooth outside of a finite union of (𝑚 − ⌊𝑠𝑝⌋ − 1)-dimensional submanifolds of ℳ.
Then, Lemma 2.2 ensures that, if 𝑢 is smooth, then 𝑃(𝑢 − 𝑎) belongs to the class ℛ𝑠,𝑝 for
almost every 𝑎 as soon as it belongs to𝑊 𝑠,𝑝 , provided that ℓ = ⌊𝑠𝑝⌋ + 1.

We conclude this section with a last result ensuring that, for 𝑎 sufficiently small,
𝑃(· − 𝑎) restricts to a smooth diffeomorphism on 𝒩. This property is crucial if we want
our projection to preserve the values of the projected map which are already on the
manifold. More specifically, the map that we will be willing to consider is the map
(𝑃(· − 𝑎)|𝒩)−1 ◦ 𝑃 ◦ (𝑢 − 𝑎), which, unlike 𝑃 ◦ (𝑢 − 𝑎), coincides with 𝑢 wherever 𝑢 takes
its values into 𝒩.

Proposition 2.4. Let 𝑃 : ℝ𝜈 \𝛴 → 𝒩 be an ℓ -singular projection. There exists 𝜀 > 0 such that,
for every 𝑎 ∈ ℝ𝜈 satisfying |𝑎 | ≤ 𝜀, the map 𝑃(· − 𝑎)|𝒩 : 𝒩 → 𝒩 is a smooth diffeomorphism.

Proof. This is a direct consequence of the fact that diffeomorphisms form an open set
in the 𝐶1 topology, see e.g. [Hir76, Theorem 1.6], as 𝑃(· − 𝑎)|𝒩 is close to id𝒩 in the 𝐶1

topology whenever |𝑎 | is sufficiently small. □

3 The case 𝑠 ≥ 1

This section is devoted to the proof of our positive result in the range 𝑠 ≥ 1, namely
Theorem 1.2. For this purpose, we shall need the following lemma for estimating the
Gagliardo seminorm of a product.

Lemma 3.1. Let 𝑖 ∈ ℕ∗, 1 ≤ 𝑝 < +∞, and 0 < 𝜎 < 1. If for every 𝛼 ∈ {1, . . . , 𝑖},
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𝑣𝛼 ∈ 𝐿𝑞𝛼 (ℝ𝑚) and D𝑣𝛼 ∈ 𝐿𝑟𝛼 (ℝ𝑚), where 1 < 𝑟𝛼 < 𝑞𝛼 and

1 − 𝜎
𝑞𝛼

+ 𝜎
𝑟𝛼

+
𝑖∑

𝛽=1
𝛽≠𝛼

1
𝑞𝛽

=
1
𝑝

,

then ���� 𝑖∏
𝛼=1

𝑣𝛼

����
𝑊𝜎,𝑝(ℝ𝑚)

≤ 𝐶

𝑖∑
𝛼=1

(
∥𝑣𝛼∥1−𝜎

𝐿𝑞𝛼 (ℝ𝑚)∥D𝑣𝛼∥
𝜎
𝐿𝑟𝛼 (ℝ𝑚)

𝑖∏
𝛽=1
𝛽≠𝛼

∥𝑣𝛽∥𝐿𝑞𝛽 (ℝ𝑚)

)
,

for some constant 𝐶 > 0 depending on 𝑚, 𝜎, 𝑝, the 𝑟𝛼, and the 𝑞𝛼.

The above statement is taken from [BPVS13, Lemma 2.9], but the lemma was already
proved implicitly in [MS02, Section 2].

We now turn to the proof of Theorem 1.2. We mention importantly that our argument
owes much to the proof of the continuity of the composition operator proposed by
Maz’ya and Shaposhnikova [MS02], see also [BPVS13].

Proof of Theorem 1.2. We start by observing that it suffices to consider the case where the
domain is ℝ𝑚 . Indeed, if the domain is (the closure of) a smooth bounded open subset
of ℝ𝑚 , one may instead work with an extension of 𝑢 to the whole ℝ𝑚 . If the domain
is more generally a compact manifold of dimension 𝑚, one may localize the argument
in a finite number of chart domains to return to the case of a smooth bounded open
subset of ℝ𝑚 . When 𝑠 ∈ ℕ∗, the validity of this trick directly follows from the additivity
of the integral. When 𝑠 is not an integer, one should rely on a suitable substitute, see
e.g. [Det23, Lemma 2.1].

That being said, let us fix 𝑢 ∈ (𝑊 𝑠,𝑝 ∩ 𝐿∞)(ℝ𝑚 ;ℝ𝜈), and write 𝑠 = 𝑘 + 𝜎, with 𝑘 ∈ ℕ

and 𝜎 ∈ [0, 1). We start with the case 𝜎 = 0, and thus 𝑠 = 𝑘 ∈ ℕ∗. The Faà di Bruno
formula ensures that

|D𝑘(𝑃 ◦ (𝑢 − 𝑎))(𝑥)| ≲
𝑘∑
𝑖=1

∑
1≤𝑡1≤···≤𝑡𝑖
𝑡1+···+𝑡𝑖=𝑘

1
dist (𝑢(𝑥) − 𝑎,𝛴)𝑖

|D𝑡1𝑢(𝑥)| · · · |D𝑡𝑖𝑢(𝑥)|. (3.1)

Therefore, since 𝑖𝑝 ≤ 𝑠𝑝 < ℓ , we deduce that∫
𝐵𝜈
𝛼

|D𝑘(𝑃 ◦ (𝑢 − 𝑎))(𝑥)|𝑝 d𝑎 ≲
𝑘∑
𝑖=1

∑
1≤𝑡1≤···≤𝑡𝑖
𝑡1+···+𝑡𝑖=𝑘

|D𝑡1𝑢(𝑥)|𝑝 · · · |D𝑡𝑖𝑢(𝑥)|𝑝 . (3.2)
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Using Tonelli’s theorem along with Hölder’s inequality, we find∫
𝐵𝜈
𝛼

(∫
ℝ𝑚

|D𝑘(𝑃 ◦ (𝑢 − 𝑎))(𝑥)|𝑝
)

d𝑎 ≲
𝑘∑
𝑖=1

∑
1≤𝑡1≤···≤𝑡𝑖
𝑡1+···+𝑡𝑖=𝑘

𝑖∏
𝑗=1

∥D𝑡 𝑗𝑢∥𝑝
𝐿
𝑘𝑝/𝑡𝑗 (ℝ𝑚)

.

Owing to the Gagliardo–Nirenberg inequality, we have 𝑢 ∈𝑊 𝑡 ,
𝑘𝑝
𝑡 (ℝ𝑚) for every 1 ≤ 𝑡 ≤

𝑘 with

∥D𝑡𝑢∥𝐿𝑘𝑝/𝑡 (ℝ𝑚) ≲ ∥𝑢∥1− 𝑡
𝑘

𝐿∞(ℝ𝑚)∥𝑢∥
𝑡
𝑘

𝑊 𝑠,𝑝(ℝ𝑚).

We conclude that∫
𝐵𝜈
𝛼

|𝑃 ◦ (𝑢 − 𝑎)|𝑝
𝑊 𝑠,𝑝(ℝ𝑚) d𝑎 ≤ 𝐶∥𝑢∥𝑝

𝑊 𝑠,𝑝(ℝ𝑚).

We now turn to the case 0 < 𝜎 < 1. By symmetry of the integrand in the Gagliardo
seminorm with respect to 𝑥 and 𝑦, we only need to work on the region {dist (𝑢(𝑥) − 𝑎,𝛴) ≤
dist (𝑢(𝑦) − 𝑎,𝛴)}. We start by writing

|D𝑘(𝑃 ◦ (𝑢 − 𝑎))(𝑥) − D𝑘(𝑃 ◦ (𝑢 − 𝑎))(𝑦)|𝑝

≲
𝑘∑
𝑗=1

∑
1≤𝑡1≤···≤𝑡 𝑗
𝑡1+···+𝑡 𝑗=𝑘

(
𝐴 𝑗 ,𝑡1 ,...,𝑡 𝑗 (𝑥, 𝑦, 𝑎) + 𝐵 𝑗 ,𝑡1 ,...,𝑡 𝑗 (𝑥, 𝑦, 𝑎)

)
, (3.3)

where

𝐴 𝑗 ,𝑡1 ,...,𝑡 𝑗 (𝑥, 𝑦, 𝑎) = |D𝑗𝑃(𝑢(𝑥) − 𝑎) − D𝑗𝑃(𝑢(𝑦) − 𝑎)|𝑝 |D𝑡1𝑢(𝑥)|𝑝 · · · |D𝑡1𝑢(𝑥)|𝑝

and

𝐵 𝑗 ,𝑡1 ,...,𝑡 𝑗 (𝑥, 𝑦, 𝑎)
= |D𝑗𝑃(𝑢(𝑦) − 𝑎)|𝑝 |D𝑡1𝑢(𝑥) ⊗ · · · ⊗ D𝑡 𝑗𝑢(𝑥) − D𝑡1𝑢(𝑦) ⊗ · · · ⊗ D𝑡 𝑗𝑢(𝑦)|𝑝 .

(3.4)

We first handle the term containing 𝐴 𝑗 ,𝑡1 ,...,𝑡 𝑗 . Using [Det25, Lemma 3.13], we estimate

|D𝑗𝑃(𝑢(𝑥) − 𝑎) − D𝑗𝑃(𝑢(𝑦) − 𝑎)| ≲
|𝑢(𝑥) − 𝑢(𝑦)|

dist (𝑢(𝑥) − 𝑎,𝛴)𝑗+1 . (3.5)

13



On the other hand, by definition of singular projections,

|D𝑗𝑃(𝑢(𝑥) − 𝑎) − D𝑗𝑃(𝑢(𝑦) − 𝑎)| ≲ 1
dist (𝑢(𝑥) − 𝑎,𝛴)𝑗

. (3.6)

To estimate
∫
𝐵𝜈
𝛼

∫
ℝ𝑚

∫
{dist (𝑢(𝑥)−𝑎,𝛴)≤dist (𝑢(𝑦)−𝑎,𝛴)}

𝐴𝑗 ,𝑡1 ,...,𝑡 𝑗 (𝑥,𝑦,𝑎)
|𝑥−𝑦 |𝑚+𝜎𝑝 d𝑦 d𝑥 d𝑎, we split the integral

with respect to 𝑦 into two parts, one over the region 𝐵𝑚𝜌 (𝑥), and one over the region
ℝ𝑚 \ 𝐵𝑚𝜌 (𝑥), with some 𝜌 > 0 to be chosen later on.

In the region ℝ𝑚 \ 𝐵𝑚𝜌 (𝑥), we rely on the straightforward estimate∫
ℝ𝑚\𝐵𝑚𝜌 (𝑥)

1
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦 ≲ 𝜌−𝜎𝑝 . (3.7)

To estimate the integral over the region 𝐵𝑚𝜌 (𝑥), we start with the inequality

|𝑢(𝑥)−𝑢(𝑦)|𝑝 ≤ |𝑥− 𝑦 |𝑝
∫ 1

0
|D𝑢(𝑥+ 𝑡(𝑦− 𝑥))|𝑝 d𝑡 for almost every 𝑥, 𝑦 ∈ ℝ𝑚 . (3.8)

(This is straightforward when 𝑢 is smooth. For a proof of the validity of (3.8) for mere
Sobolev maps, we refer the reader e.g. to [VS19, Proposition 1.4].) With the change of
variable ℎ = 𝑦 − 𝑥, we obtain∫

𝐵𝑚𝜌 (𝑥)

|𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦 ≤

∫ 1

0

∫
𝐵𝑚𝜌

|D𝑢(𝑥 + 𝑡ℎ)|𝑝

|ℎ |𝑚+(𝜎−1)𝑝 dℎ d𝑡

=

∫ 1

0
𝑡(𝜎−1)𝑝

∫
𝐵𝑚𝑡𝜌(𝑥)

|D𝑢(𝑦)|𝑝

|𝑥 − 𝑦 |𝑚+(𝜎−1)𝑝 d𝑦 d𝑡.

Hedberg’s lemma [Hed72] then ensures that∫
𝐵𝑚𝜌 (𝑥)

|𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦 ≲

∫ 1

0
𝑡(𝜎−1)𝑝(𝑡𝜌)(1−𝜎)𝑝ℳ(|D𝑢 |𝑝)(𝑥)d𝑡 = 𝜌(1−𝜎)𝑝ℳ(|D𝑢 |𝑝)(𝑥).
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Choosing 𝜌 = dist (𝑢(𝑥) − 𝑎,𝛴)ℳ(|D𝑢 |𝑝)(𝑥)−
1
𝑝 , we conclude that∫

{dist (𝑢(𝑥)−𝑎,𝛴)≤dist (𝑢(𝑦)−𝑎,𝛴)}

𝐴 𝑗 ,𝑡1 ,...,𝑡 𝑗 (𝑥, 𝑦, 𝑎)
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦

≲

(
𝜌−𝜎𝑝 + 𝜌(1−𝜎)𝑝ℳ(|D𝑢 |𝑝)(𝑥) 1

dist (𝑢(𝑥) − 𝑎,𝛴)𝑝
)
|D𝑡1𝑢(𝑥)|𝑝 · · · |D𝑡 𝑗𝑢(𝑥)|𝑝

dist (𝑢(𝑥) − 𝑎,𝛴)𝑗𝑝

≲
1

dist (𝑢(𝑥) − 𝑎,𝛴)𝑠𝑝
(ℳ(|D𝑢 |𝑝)(𝑥))𝜎 |D𝑡1𝑢(𝑥)|𝑝 · · · |D𝑡 𝑗𝑢(𝑥)|𝑝 .

(3.9)

Here we have used the fact that (𝑗 + 𝜎)𝑝 ≤ 𝑠𝑝 and the boundedness of 𝑢. (The last
hidden constant depends on the 𝐿∞ norm of 𝑢.)

Using Tonelli’s theorem and the fact that 𝑠𝑝 < ℓ , we deduce that∫
𝐵𝜈
𝛼

∫
ℝ𝑚

∫
{dist (𝑢(𝑥)−𝑎,𝛴)≤dist (𝑢(𝑦)−𝑎,𝛴)}

𝐴 𝑗 ,𝑡1 ,...,𝑡 𝑗 (𝑥, 𝑦, 𝑎)
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦 d𝑥 d𝑎

≲

∫
ℝ𝑚

(ℳ(|D𝑢 |𝑝)(𝑥))𝜎 |D𝑡1𝑢(𝑥)|𝑝 · · · |D𝑡 𝑗𝑢(𝑥)|𝑝 d𝑥.

By Hölder’s inequality, we obtain∫
ℝ𝑚

(ℳ(|D𝑢 |𝑝)(𝑥))𝜎 |D𝑡1𝑢(𝑥)|𝑝 · · · |D𝑡 𝑗𝑢(𝑥)|𝑝 d𝑥 ≤ ∥ℳ(|D𝑢 |𝑝)∥𝜎
𝐿𝑠 (ℝ𝑚)

𝑗∏
𝑖=1

∥D𝑡𝑖𝑢∥𝑝
𝐿𝑠𝑝/𝑡𝑖 (ℝ𝑚)

.

By virtue of the Gagliardo–Nirenberg inequality, we have D𝑡𝑢 ∈ 𝐿𝑠𝑝/𝑡(ℝ𝑚) for every
1 ≤ 𝑡 ≤ 𝑘, with

|D𝑡𝑢 |𝐿𝑠𝑝/𝑡 (ℝ𝑚) ≲ ∥𝑢∥
𝑡
𝑠

𝑊 𝑠,𝑝((ℝ𝑚). (3.10)

In particular, since 𝑠 > 1, the maximal function theorem implies thatℳ(|D𝑢 |𝑝) ∈ 𝐿𝑠(ℝ𝑚)
with ∥ℳ(|D𝑢 |𝑝)∥𝐿𝑠 (ℝ𝑚) ≲ ∥𝑢∥

𝑝
𝑠

𝑊 𝑠,𝑝(ℝ𝑚). We conclude that∫
ℝ𝑚

(ℳ(|D𝑢 |𝑝)(𝑥))𝜎 |D𝑡1𝑢(𝑥)|𝑝 · · · |D𝑡 𝑗𝑢(𝑥)|𝑝 d𝑥 ≲ ∥𝑢∥𝑝
𝑊 𝑠,𝑝(ℝ𝑚).

We now turn to the estimate of the second term in (3.3), involving 𝐵 𝑗 ,𝑡1 ,...,𝑡 𝑗 (𝑥, 𝑦, 𝑎).
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Using once again the assumption 𝑠𝑝 < ℓ and Tonelli’s theorem, we find∫
𝐵𝜈
𝛼

∫
ℝ𝑚

∫
{dist (𝑢(𝑥)−𝑎,𝛴)≤dist (𝑢(𝑦)−𝑎,𝛴)}

𝐵 𝑗 ,𝑡1 ,...,𝑡 𝑗 (𝑥, 𝑦, 𝑎)
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦 d𝑥 d𝑎

≲

∫
ℝ𝑚

∫
ℝ𝑚

|D𝑡1𝑢(𝑥) ⊗ · · · ⊗ D𝑡 𝑗𝑢(𝑥) − D𝑡1𝑢(𝑦) ⊗ · · · ⊗ D𝑡 𝑗𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦 d𝑥.

The right-hand side above is nothing else but |D𝑡1𝑢 ⊗ · · · ⊗ D𝑡 𝑗𝑢 |𝑝
𝑊𝜎,𝑝(𝛺). We estimate it

via Lemma 3.1. For this purpose, we choose the 𝑣𝛼 to be the D𝑡𝑖𝑢, the 𝑞𝛼 to be 𝑠𝑝

𝑡𝛼
, the 𝑟𝛼

to be 𝑠𝑝

𝑡𝛼+1
, and we deduce that∫

ℝ𝑚

∫
ℝ𝑚

|D𝑡1𝑢(𝑥) ⊗ · · · ⊗ D𝑡 𝑗𝑢(𝑥) − D𝑡1𝑢(𝑦) ⊗ · · · ⊗ D𝑡 𝑗𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦 d𝑥

≲

𝑗∑
𝑖=1

(
∥D𝑡𝑖𝑢∥(1−𝜎)𝑝

𝐿𝑠𝑝/𝑡𝑖 (ℝ𝑚)
∥D𝑡𝑖+1𝑢∥𝜎𝑝

𝐿𝑠𝑝/(𝑡𝑖+1)(ℝ𝑚)

𝑗∏
𝛽=1
𝛽≠𝑖

∥D𝑡𝛽𝑢∥𝑝
𝐿
𝑠𝑝/𝑡𝛽 (ℝ𝑚)

)
.

Invoking once more the Gagliardo–Nirenberg inequality (3.10), we deduce that∫
ℝ𝑚

∫
ℝ𝑚

|D𝑡1𝑢(𝑥) ⊗ · · · ⊗ D𝑡 𝑗𝑢(𝑥) − D𝑡1𝑢(𝑦) ⊗ · · · ⊗ D𝑡 𝑗𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦 d𝑥 ≲ ∥𝑢∥𝑝

𝑊 𝑠,𝑝(ℝ𝑚),

which concludes the proof. □

We conclude this section by presenting two applications of Theorem 1.2, as announced
in the introduction. First, we state the following result concerning the extension of traces
of manifold-valued maps in the range 𝑠 + 1

𝑝 ≥ 1.

Theorem 3.2. Assume that 𝒩 admits an ℓ -singular projection 𝑃 : ℝ𝜈 \ 𝛴 → 𝒩. If 𝑠 ∉ ℕ is
such that 𝑠 + 1

𝑝 ≥ 1 and if 𝑠𝑝 + 1 < ℓ , then every map 𝑢 ∈ 𝑊 𝑠,𝑝(𝜕ℳ;𝒩) admits an extension

𝑈 ∈𝑊 𝑠+ 1
𝑝 ,𝑝(ℳ;𝒩) such that tr𝑈 = 𝑢 on 𝜕ℳ and

∥𝑈 ∥
𝑊

𝑠+ 1
𝑝 ,𝑝(ℳ)

≤ ∥𝑢∥𝑊 𝑠,𝑝(𝜕ℳ),

for some constant 𝐶 > 0 depending on 𝑠, 𝑝, ℳ, and 𝒩. Moreover, the extension may be chosen
to be smooth inside intℳ except on an (𝑚 − ℓ )-dimensional closedly embedded submanifold of
intℳ.

In the range where 𝑠 + 1
𝑝 < 1, the conclusion of Theorem 3.2 holds under the assump-

tion that 𝑝 < ℓ ; see [Vin25, Theorem 2.11] for a closely related result. We note that this
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assumption is indeed more stringent, as then

𝑠𝑝 + 1 = 𝑝
(
𝑠 + 1

𝑝

)
< 𝑝.

It is an open question whether or not the conclusion of Theorem 3.2 holds under the
weaker assumption 𝑠𝑝 + 1 in the whole range where 0 < 𝑠 < +∞ is not an integer. If 𝒩
admits an ℓ -singular projection, there is hope that this approach might still work, taking
into account the fact that ℝ𝜈-valued extensions can be constructed by convolution of an
𝒩-valued𝑊 𝑠,𝑝 map, even though it does not seem obvious how to exploit this informa-
tion — unlike for the approximation problem, see Corollary 3.4 and the comment that
follows it. The general case where the target admits no singular projection is completely
open, even though there is a natural candidate for the necessary and sufficient condition
for the extension of traces to hold, in the spirit of the case 𝑠 = 1 − 1

𝑝 , as explained in the
introduction.

Proof of Theorem 3.2. By the classical extension theory, we know that 𝑢 admits a bounded
extension 𝑣 ∈𝑊 𝑠+ 1

𝑝 ,𝑝(ℳ;ℝ𝜈) such that tr 𝑣 = 𝑢 on 𝜕ℳ, which is moreover smooth inside
intℳ and satisfies

∥𝑣∥
𝑊

𝑠+ 1
𝑝 ,𝑝(ℳ)

≲ ∥𝑢∥𝑊 𝑠,𝑝(𝜕ℳ).

Using Theorem 1.2, we choose 𝑎 ∈ 𝐵𝜈
𝛼 such that 𝑃 ◦ (𝑣 − 𝑎) ∈𝑊 𝑠+ 1

𝑝 ,𝑝(ℳ;𝒩) and

∥𝑃 ◦ (𝑣 − 𝑎)∥
𝑊

𝑠+ 1
𝑝 ,𝑝(ℳ)

≲ ∥𝑣∥
𝑊

𝑠+ 1
𝑝 ,𝑝(ℳ)

.

If 𝛼 > 0 is chosen to be sufficiently small, then Proposition 2.4 ensures that 𝑃(· − 𝑎)|𝒩 is
a smooth diffeomorphism. The map𝑈 = (𝑃(· − 𝑎)|𝒩)−1 ◦ 𝑃 ◦ (𝑢 − 𝑎) satisfies the desired
conclusion. □

In the higher order setting, this approach also allows to prescribe the trace of the
derivatives. To avoid excessive technicality, let us only sketch the case 𝑠 = 2 − 1

𝑝 .

We claim that the extension 𝑈 ∈ 𝑊2,𝑝(ℳ;𝒩) of a map 𝑢 ∈ 𝑊
2− 1

𝑝 ,𝑝(𝜕ℳ;𝒩) can be
chosen to further satisfy tr 𝜕n𝑈 = 𝑢n for any given map 𝑢n ∈ 𝑊1− 1

𝑝 ,𝑝(𝜕ℳ;ℝ𝜈) such that
𝑢n(𝑥) ∈ 𝑇𝑢(𝑥)𝒩 for almost every 𝑥 ∈ 𝜕ℳ, where 𝑇𝑢(𝑥)𝒩 denotes the tangent plane of 𝒩
at the point 𝑢(𝑥) and 𝜕n the derivative in the direction normal to 𝜕ℳ. In a more abstract
fashion, the condition 𝑢n(𝑥) ∈ 𝑇𝑢(𝑥)𝒩 could be formulated by relying on the tangent
bundle of 𝒩. However, unlike 𝒩, 𝑇𝒩 is not compact, and hence the Sobolev space of
mappings into 𝑇𝒩 depends on the choice of the embedding of 𝑇𝒩 into a Euclidean
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space as soon as 𝑠 > 1. We therefore avoid this issue by relying on the fact that, as 𝒩 is
embedded into ℝ𝜈, each of its tangent planes is also naturally embedded into ℝ𝜈.

Let us explain how to adapt the proof of Theorem 3.2 to obtain the additional con-
clusion on the trace of the extension. By the classical linear theory, the extension
𝑣 ∈𝑊2,𝑝(ℳ;ℝ𝜈) can be chosen to further satisfy tr 𝜕n𝑣 = 𝑢n. But now, as

D(𝑃(𝑧 − 𝑎)|𝒩)−1 = (D𝑃(𝑧 − 𝑎)|𝒩)−1 on 𝑇𝑧𝒩,

it follows directly from the chain rule that the map𝑈 = (𝑃(·− 𝑎)|𝒩)−1◦𝑃◦(𝑢− 𝑎) satisfies
the required additional conclusion.

Theorem 3.2 and the previous remark provide a first partial answer to several ques-
tions stated notably in [MVS21] concerning generalizations of the inverse trace theory
for mappings into manifolds for 𝑠 ≠ 1 − 1

𝑝 , possibly with prescribed normal traces,
although our results are restricted to the special situation where a singular projection is
available, as already explained in the introduction.

Second, we explain how the proof of Theorem 1.2 can be adapted to yield a result
suited for converging sequences, from which one may derive a strong density result for
almost smooth maps. More precisely, we prove the following theorem.

Theorem 3.3. Let 𝑃 : ℝ𝜈 \ 𝛴 → 𝒩 be an ℓ -singular projection. If 𝑠 ≥ 1 and 𝑠𝑝 < ℓ , then for
every map 𝑢 ∈ 𝑊 𝑠,𝑝(ℳ;ℝ𝜈) ∩ 𝐿∞(ℳ;ℝ𝜈), for every sequence (𝑢𝑛)𝑛∈ℕ that converges to 𝑢 in
𝑊 𝑠,𝑝(ℳ;ℝ𝜈) and is uniformly bounded in 𝐿∞(ℳ;ℝ𝜈), and for every 𝛼 > 0, we have∫

𝐵𝜈
𝛼

|𝑃 ◦ (𝑢𝑛 − 𝑎) − 𝑃 ◦ (𝑢 − 𝑎)|𝑝
𝑊 𝑠,𝑝(ℳ) d𝑎 → 0 as 𝑛 → +∞.

Proof. The proof follows closely the strategy in the proof of Theorem 1.2. To avoid
repeating most of the proof, we only indicate the main steps of the argument, and make
use of several intermediate steps of the proof of Theorem 1.2. Moreover, it suffices
to prove that the conclusion of the theorem holds up to extraction of a subsequence,
since one may then conclude its validity along the whole sequence by applying the
subsequence principle. Finally, as in Theorem 1.2, it suffices to consider the case where
the domain is ℝ𝑚 .

That being said, let us first assume that 𝑠 = 𝑘 is an integer. Combining the Gagliardo–
Nirenberg inequality with the partial converse of the dominated convergence theorem,
we find the existence of maps 𝑔𝑡 ∈ 𝐿𝑘𝑝/𝑡(ℝ𝑚) such that, up to extraction of a subsequence,
|D𝑡𝑢𝑛 | ≤ 𝑔𝑡 almost everywhere for every 1 ≤ 𝑡 ≤ 𝑘 and every 𝑛 ∈ ℕ. This combined
with (3.1) and the assumption 𝑘𝑝 < ℓ implies the uniform integrability of the sequence
(D𝑘(𝑃◦(𝑢𝑛−𝑎))(𝑥))𝑛∈ℕ with respect to the variable 𝑎. As this sequence converges almost
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everywhere, up to a further extraction, to D𝑘(𝑃 ◦ (𝑢 − 𝑎))(𝑥), we deduce from the Vitali
convergence theorem that∫

𝐵𝜈
𝛼

|D𝑘(𝑃 ◦ (𝑢𝑛 − 𝑎))(𝑥) − D𝑘(𝑃 ◦ (𝑢 − 𝑎))(𝑥)|𝑝 d𝑎 → 0 for almost every 𝑥 ∈ ℝ𝑚 .

But now, (3.2) combined with the domination |D𝑡𝑢𝑛 | ≤ 𝑔𝑡 allows to conclude by
Lebesgue’s dominated convergence theorem and Tonelli’s theorem.

Let us now assume that 𝜎 ∈ (0, 1), and follow the same strategy. Using again the partial
converse of the dominated convergence theorem as well as the Gagliardo–Nirenberg
inequality, we deduce from (3.9) the uniform equi-integrability of the∫

{dist (𝑢𝑛(𝑥)−𝑎,𝛴)≤dist (𝑢𝑛(𝑦)−𝑎,𝛴)}

𝐴 𝑗 ,𝑡1 ,...,𝑡 𝑗 ,𝑛(𝑥, 𝑦, 𝑎)
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦

with respect to 𝑎. Here, we have denoted by𝐴 𝑗 ,𝑡1 ,...,𝑡 𝑗 ,𝑛 the quantity𝐴 𝑗 ,𝑡1 ,...,𝑡 𝑗 associated to
𝑢𝑛 . Another application of the partial converse of the dominated convergence theorem
and the assumption 𝑠𝑝 < ℓ provides the uniform equi-integrability of the∫

{dist (𝑢𝑛(𝑥)−𝑎,𝛴)≤dist (𝑢𝑛(𝑦)−𝑎,𝛴)}

𝐵 𝑗 ,𝑡1 ,...,𝑡 𝑗 ,𝑛(𝑥, 𝑦, 𝑎)
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦

with respect to 𝑎. Therefore, we are again in position to apply the Vitali convergence
theorem to obtain∫
𝐵𝜈
𝛼

∫
{dist (𝑢𝑛(𝑥)−𝑎,𝛴)≤dist (𝑢𝑛(𝑦)−𝑎,𝛴)}

|D𝑘𝑣𝑛(𝑥, 𝑎) − D𝑘𝑣𝑛(𝑦, 𝑎) + D𝑘𝑣(𝑥, 𝑎) − D𝑘𝑣(𝑦, 𝑎)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦 d𝑎 → 0

for almost every 𝑥 ∈ ℝ𝑚 , where 𝑣𝑛(𝑥, 𝑎) = 𝑃 ◦ (𝑢𝑛 − 𝑎)(𝑥) and 𝑣(𝑥, 𝑎) = 𝑃 ◦ (𝑢 − 𝑎)(𝑥).
We conclude once again via the dominated convergence theorem. □

As a corollary, we deduce the following strong approximation result by almost smooth
maps.

Corollary 3.4. Assume that 𝑠 ≥ 1 and that 𝒩 admits an (⌊𝑠𝑝⌋ + 1)-singular projection. Then,
the class ℛ𝑠,𝑝(ℳ;𝒩) is dense in𝑊 𝑠,𝑝(ℳ;𝒩).

Proof. Given a map 𝑢 ∈ 𝑊 𝑠,𝑝(ℳ;𝒩), we apply Theorem 3.3 to any sequence (𝑢𝑛)𝑛∈ℕ
of smooth bounded 𝑊 𝑠,𝑝(ℳ;ℝ𝜈) maps that converges to 𝑢 in 𝑊 𝑠,𝑝 and is uniformly
bounded in 𝐿∞, and we conclude with the aid of with Lemma 2.2 and Proposition 2.4. □

Corollary 3.4 is a special case of [Det25, Theorem 2.4]. The main difference here is
the restriction 𝑠 ≥ 1, while [Det25, Theorem 2.4] covers the full range 0 < 𝑠 < +∞. This
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comes from the fact that the proof of Corollary 3.4 relies on a result for the method of
singular projection that works for any converging sequence of ℝ𝜈-valued 𝑊 𝑠,𝑝 maps,
while the approach in [Det25] was relying heavily on the use of a sequence of maps
obtained as convolutions of an 𝒩-valued map.

4 The case 0 < 𝑠 < 1

We now move to our negative result in the range 0 < 𝑠 < 1, namely Theorem 1.3.
We start by introducing some notation. In this section, as we are concerned with
Theorem 1.3, we denote by 𝑃 the retraction ℝℓ \ {0} → 𝕊ℓ−1 given by 𝑃(𝑥) = 𝑥

|𝑥 | . We let
𝑒𝑖 be the 𝑖-th vector of the canonical basis of ℝℓ , and given 𝑐 ∈ 𝔹ℓ and 𝑛 ∈ ℕ, we let
𝑐+ = 𝑐+𝑛 = 𝑐 + 21−𝑛𝑒1 and 𝑐− = 𝑐−𝑛 = 𝑐 − 21−𝑛𝑒1. Finally, similar to balls, we denote by
𝑄ℓ
𝑟 (𝑎) the cube of inradius 𝑟 centered at 𝑎 in ℝℓ , so that 𝑄ℓ

𝑟 (𝑎) has a sidelength equal to
2𝑟.

The building block of our construction is a function taking both values 𝑐+ and 𝑐−

on two close cubes, and whose instrumental properties are collected in the following
lemma.

Lemma 4.1. For every 𝑛 ∈ ℕ, every 𝑐 ∈ 𝔹ℓ , and every 0 < 𝑠 < 1 and 1 ≤ 𝑝 < +∞, there
exists a map 𝑣𝑐 ∈ 𝐶∞

c (ℝℓ ;ℝℓ ) with support contained in 𝑄ℓ and such that

|𝑣𝑐 |𝑝𝑊 𝑠,𝑝(ℝℓ ) ≤ 𝐶 (4.1)

while, for every 𝑎 ∈ 𝔹ℓ ,

|𝑃 ◦ (𝑣𝑐 − 𝑎)|𝑝𝑊 𝑠,𝑝(𝔹ℓ ) ≥ 𝐶′ |𝑃(𝑐+ − 𝑎) − 𝑃(𝑐− − 𝑎)|𝑝

2(1−𝑛)𝑝
, (4.2)

for some constants 𝐶, 𝐶′ > 0 depending on 𝑠, 𝑝, and ℓ .

Proof. We fix a cutoff function 𝜓 ∈ 𝐶∞
c (ℝℓ ) whose support is contained in 𝔹ℓ and such

that 0 ≤ 𝜓 ≤ 1 and 𝜓 = 1 on 𝐵ℓ1/2. We define the map 𝑤𝑐 by 𝑤𝑐(𝑥) = 𝑐 + 21−𝑛(𝜓(𝑥 − 𝑒1) −
𝜓(𝑥 + 𝑒1))𝑒1, so that 𝑤𝑐 = 𝑐− on 𝐵ℓ1/2(−𝑒1) and 𝑤𝑐 = 𝑐+ on 𝐵ℓ1/2(𝑒1). It is straightforward
to observe that |𝑤𝑐 |𝑊 𝑠,𝑝(ℝℓ ) ≲ 2(1−𝑛)𝑝 while |𝑃 ◦ (𝑤𝑐 − 𝑎)|𝑝𝑊 𝑠,𝑝(𝔹ℓ ) ≳ |𝑃(𝑐+− 𝑎) −𝑃(𝑐−− 𝑎)|𝑝 .

We would like to transform 𝑤𝑐 into a compactly supported map while preserving the
order of the ratio between the projected map and the original one. However, we need
to cope with the fact that the transition towards 0 will bring a fixed cost to the Sobolev
energy. We bypass this issue by clustering several scaled copies of the map 𝑤𝑐 , using
an analogue argument to [MVS19, Proof of Theorem 3.1]. Namely, we construct a map
𝑤̃𝑐 by arranging scaled copies of the map 𝑤𝑐 on 𝑘ℓ balls of radius of order 1

𝑘
arranged
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in a regular grid inside 𝐵ℓ1/2, with 𝑘 ∈ ℕ∗ to be chosen later on. In particular, the map
𝑤̃𝑐 takes the value 𝑐 outside of 𝐵ℓ1/2. By scaling and the countable patching property of
Sobolev maps, it holds that

|𝑤̃𝑐 |𝑝𝑊 𝑠,𝑝(ℝℓ ) ≲ 𝑘
ℓ 𝑘𝑠𝑝−ℓ2(1−𝑛)𝑝 = 𝑘𝑠𝑝2(1−𝑛)𝑝 ,

while, by superadditivity,

|𝑃 ◦ (𝑤̃𝑐 − 𝑎)|𝑝
𝑊 𝑠,𝑝(𝐵ℓ1/2)

≳ 𝑘𝑠𝑝 |𝑃(𝑐+ − 𝑎) − 𝑃(𝑐− − 𝑎)|𝑝 .

We choose 𝑘 sufficiently large so that 𝑘𝑠𝑝 ≃ 2(𝑛−1)𝑝 .
Finally, we choose a function 𝜑𝑐 ∈ 𝐶∞

c (ℝℓ ) whose support is contained in 𝐵ℓ2 and such
that 𝜑𝑐 = 𝑐 on 𝔹ℓ and |𝜑𝑐 |𝑝𝑊 𝑠,𝑝(ℝℓ ) ≲ 1, and we define 𝑣𝑐 by 𝑣𝑐 = 𝑤̃𝑐 on 𝔹ℓ and 𝑣𝑐 = 𝜑𝑐

outside of 𝔹ℓ . It follows from the almost additivity of the Gagliardo seminorm, see
e.g. [MVS19, Lemma 2.2], that

|𝑣𝑐 |𝑝𝑊 𝑠,𝑝(ℝℓ ) ≲ |𝑤̃𝑐 |𝑝𝑊 𝑠,𝑝(ℝℓ ) + |𝜑𝑐 |𝑝𝑊 𝑠,𝑝(ℝℓ ) ≲ 1,

while

|𝑃 ◦ (𝑣𝑐 − 𝑎)|𝑝𝑊 𝑠,𝑝(𝔹ℓ ) ≳ 𝑘
𝑠𝑝 |𝑃(𝑐+ − 𝑎) − 𝑃(𝑐− − 𝑎)|𝑝 ≳ |𝑃(𝑐+ − 𝑎) − 𝑃(𝑐− − 𝑎)|𝑝

2(1−𝑛)𝑝
,

which concludes the proof. □

To make use of Lemma 4.1, we need to suitably estimate the quantity |𝑃(𝑐+ − 𝑎) −
𝑃(𝑐− − 𝑎)|. We present two different arguments: the first one is simpler, but it only
covers the range 𝑝 > ℓ ; the second one is slightly more involved, but allows to handle
also the limiting case 𝑝 = ℓ . These arguments each rely on a lemma involving planar
geometry, respectively Lemma 4.2 and Lemma 4.3 below.

Lemma 4.2. For every 𝑛 ∈ ℕ, every 𝑐 ∈ 𝔹ℓ , and every 𝑎 ∈ 𝑄ℓ
2−𝑛 (𝑐), we have

|𝑃(𝑐+ − 𝑎) − 𝑃(𝑐− − 𝑎)| ≥ 𝐶,

for some constant 𝐶 > 0 depending only on ℓ .

Lemma 4.3. For every 𝑛 ∈ ℕ, every 𝑐 ∈ 𝔹ℓ , and every 𝑎 ∈ 𝔹ℓ such that (i) the angle 𝜑 formed
by the vectors 𝑎 − 𝑐 and 𝑒1 satisfies |cos 𝜑 | ≤ 1

8 , (ii) |𝑎 − 𝑐 | ≥ 2−𝑛 , we have

|𝑃(𝑐+ − 𝑎) − 𝑃(𝑐− − 𝑎)| ≥ 𝐶
21−𝑛

|𝑎 − 𝑐 | ,
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for some constant 𝐶 > 0 depending only on ℓ .

Taking Lemmas 4.2 and 4.3 for granted, we proceed with the proof of the main result
of this section.

Proof of Theorem 1.3. As explained in the introduction, our goal is to apply the general
nonlinear uniform boundedness principle [MVS19, Theorem 1.6] with the energy 𝒢

over ℝℓ with state space ℝℓ given by

𝒢(𝑢, 𝐴) = inf
𝑎∈𝔹ℓ

ℰ𝑠,𝑝(𝑃 ◦ (𝑢 − 𝑎), 𝐴).

Here, ℰ𝑠,𝑝 denotes the Sobolev energy defined as ℰ𝑠,𝑝(𝑢, 𝐴) = |𝑢 |𝑝
𝑊 𝑠,𝑝(𝐴). It is readily

seen that such a quantity indeed satisfies the monotonicity, scaling, and superadditivity
requirements in [MVS19]. We are going to construct a sequence (𝑢𝑛)𝑛∈ℕ in𝑊 𝑠,𝑝(𝔹ℓ ;ℝℓ )
such that

lim
𝑛→+∞

𝒢(𝑢𝑛 ,𝔹ℓ )
ℰ𝑠,𝑝(𝑢𝑛 ,𝔹ℓ )

= +∞,

and the conclusion will follow at once from the nonlinear uniform boundedness prin-
ciple.

The key idea of the proof is to suitably glue together different "patches", each of them
bringing an important contribution for some values of 𝑎. For every 𝑛 ∈ ℕ, we consider
the standard decomposition of the unit cube 𝑄ℓ into 2𝑛ℓ cubes of sidelength 21−𝑛 . We
let (𝑐𝑛,𝑘)1≤𝑘≤2𝑛ℓ be an enumeration of the centers of those cubes. For every 𝑘, we define

𝑐+
𝑛,𝑘

= 𝑐𝑛,𝑘 + 21−𝑛𝑒1 and 𝑐−𝑛,𝑘 = 𝑐𝑛,𝑘 − 21−𝑛𝑒1,

following the notation introduced before the statement of Lemma 4.1. We define

𝑣𝑛,𝑘 = 𝑣𝑐𝑛,𝑘 ,

where 𝑣𝑐𝑛,𝑘 is the map provided by Lemma 4.1. Combining (4.2) with Lemma 4.2, we
find that

ℰ𝑠,𝑝(𝑃 ◦ (𝑣𝑛,𝑘 − 𝑎),𝔹ℓ ) ≳ 2𝑛𝑝 for every 𝑎 ∈ 𝑄ℓ
2−𝑛 (𝑐𝑛,𝑘). (4.3)

We now exploit this lower bound to obtain the required estimate for our counterex-
ample. We construct a map 𝑣𝑛 by gluing together translates of the 𝑣𝑛,𝑘 , one for each
1 ≤ 𝑘 ≤ 2𝑛ℓ , so that their supports do not overlap. A straightforward lower bound
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yields

ℰ𝑠,𝑝(𝑃 ◦ (𝑣𝑛 − 𝑎), supp 𝑣𝑛) ≳ 2𝑛𝑝 for every 𝑎 ∈ 𝔹ℓ ,

by using the estimate (4.3) for a 𝑘 such that 𝑎 ∈ 𝑄ℓ
2−𝑛 (𝑐𝑛,𝑘) — this 𝑘 is unique unless 𝑎 is

on the boundary of some cube of the grid. On the other hand, the countable patching
property of Sobolev mappings, see e.g. [MVS19, Lemma 2.3], implies that

ℰ𝑠,𝑝(𝑣𝑛 ,ℝℓ ) ≲
∑

1≤𝑘≤2𝑛ℓ
ℰ𝑠,𝑝(𝑣𝑛,𝑘 ,ℝℓ ) ≲ 2𝑛ℓ . (4.4)

In the case where 𝑝 > ℓ , we find

inf
𝑎∈𝔹ℓ

ℰ𝑠,𝑝(𝑃 ◦ (𝑣𝑛 − 𝑎), supp 𝑣𝑛)

ℰ𝑠,𝑝(𝑣𝑛 ,ℝℓ )
→ +∞ as 𝑛 → +∞. (4.5)

We conclude by letting 𝑢𝑛 be a scaled copy of 𝑣𝑛 so that its support is contained in 𝔹ℓ

and invoking the nonlinear uniform boundedness principle.

If 𝑝 = ℓ , one needs to rely on a more careful estimate, and to take into account the
contribution of several centers, relying on Lemma 4.3 instead to deduce the required
lower bound on the 𝒢 energy of 𝑣𝑛 . More specifically, for a fixed point 𝑎 ∈ 𝔹ℓ and
a fixed 𝑑 ∈ 21−𝑛ℕ∗, we invoke Lemma 4.3 with 𝑐 = 𝑐𝑛,𝑘 for every 𝑘 such that the ℓ∞

distance between the center of the cube containing 𝑎 and 𝑐𝑛,𝑘 is 𝑑 and such that |𝜑 − 𝜋
2 |

is sufficiently small, and we find

|𝑃(𝑐+
𝑛,𝑘

− 𝑎) − 𝑃(𝑐−𝑛,𝑘 − 𝑎)| ≳
21−𝑛

𝑑
,

using also the fact that 𝑑 ≃ |𝑐𝑛,𝑘 − 𝑎 |. The number of corresponding such indices 𝑘
behaves like (2𝑛−1𝑑)ℓ−1 — this can be seen as a discrete isoperimetric inequality. We take
into account all these contributions, for 𝑑 = 𝑗21−𝑛 with 𝑗 ∈ ℕ∗ ranging from 1 to 2𝑛−1,
and we get from (4.2)

ℰ𝑠,𝑝(𝑃 ◦ (𝑣𝑛 − 𝑎), supp 𝑣𝑛) ≳ 2𝑛𝑝
2𝑛−1∑
𝑗=1

1
𝑗𝑝
𝑗ℓ−1 ≳ 2𝑛𝑝 ln 2𝑛−1.

Combining this with (4.4) and the fact that 𝑝 = ℓ , we deduce that we are again in position
to apply the uniform nonlinear boundedness principle to the maps 𝑢𝑛 defined as scaled
copies of 𝑣𝑛 so that their supports are contained in 𝔹ℓ , and this concludes the proof. □
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Figure 1: Estimate of |𝑃(𝑐+ − 𝑎) − 𝑃(𝑐− − 𝑎)| in Lemma 4.2

Let us make a comment about the strategy for estimating the energy of𝑃◦(𝑣𝑛−𝑎) in the
case where 𝑝 = ℓ in the above proof. The idea was to take into account the contribution
to the energy of not only one "patch" but of many of them. More specifically, we took
into account the contribution of every patch whose associated center 𝑐𝑛,𝑘 lies in a cone
with vertex 𝑎 and whose aperture is small, but fixed independently of the scale 𝑛.
Alternatively, we could have relied on a similar construction, but instead of using as a
building block the maps 𝑣𝑛,𝑘 with values concentrated around the two points 𝑐+

𝑛,𝑘
and

𝑐−
𝑛,𝑘

which are aligned along the direction 𝑒1, using rather maps with values concentrated
around several points, pairwise aligned along different directions. Using a number of
directions possibly large, but fixed independently of the scale 𝑛, it is possible to ensure
that every center then leads a significant contribution to the energy of the projected map,
eliminating the need of selecting only points in a fixed cone.

From a geometric point of view, this discussion amounts to say that one may either
consider all centers in a region small but of fixed size determined by one axis, or use
a number of axis large but independent of the scale to be in position to consider all
centers.

We now prove Lemma 4.2 and 4.3.

Proof of Lemma 4.2. We refer the reader to Figure 1 for an illustration of our constructions
and notation. We let 𝑐 be the orthogonal projection of 𝑎 onto the line passing through
𝑐+ and 𝑐−, and we observe that 𝑐 ∈ 𝑄ℓ

2−𝑛 (𝑐). We compute

𝑃(𝑐+ − 𝑎) − 𝑃(𝑐− − 𝑎) = (𝑐+ − 𝑎)|𝑐− − 𝑎 | − (𝑐− − 𝑎)|𝑐+ − 𝑎 |
|𝑐+ − 𝑎 | |𝑐− − 𝑎 | . (4.6)

Let 𝑁 denote the numerator of the right-hand side in (4.6). We compute

|𝑁 |2 = 2|𝑐+ − 𝑎 |2 |𝑐− − 𝑎 |2 − 2|𝑐+ − 𝑎 | |𝑐− − 𝑎 |(𝑐+ − 𝑎) · (𝑐− − 𝑎). (4.7)

Writing the orthogonal decomposition 𝑐± − 𝑎 = 𝑐± − 𝑐 + 𝑐 − 𝑎, we find

(𝑐+ − 𝑎) · (𝑐− − 𝑎) = |𝑐 − 𝑎 |2 − |𝑐+ − 𝑐 | |𝑐− − 𝑐 |,
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Figure 2: Estimate of |𝑃(𝑐+ − 𝑎) − 𝑃(𝑐− − 𝑎)| in Lemma 4.3

where we have used the fact that 𝑐+ − 𝑐 and 𝑐− − 𝑐 are aligned and have opposite
directions. Since 𝑐 is an orthogonal projection, we have |𝑐 − 𝑎 | ≤ |𝑐± − 𝑎 |. Hence, we
find

|𝑃(𝑐+ − 𝑎) − 𝑃(𝑐− − 𝑎)| ≥ 2 |𝑐+ − 𝑐 | |𝑐− − 𝑐 |
|𝑐+ − 𝑎 | |𝑐− − 𝑎 | .

Finally, since 𝑎 ∈ 𝑄ℓ
2−𝑛 (𝑐), we find that |𝑐± − 𝑐 | ≳ 2−𝑛 while |𝑐± − 𝑎 | ≲ 21−𝑛 , whence we

conclude that

|𝑃(𝑐+ − 𝑎) − 𝑃(𝑐− − 𝑎)| ≳ 1,

concluding the proof of the lemma. □

Proof of Lemma 4.3. Since everything takes place inside one fixed plane — depending on
𝑐 and 𝑎 — we may assume that ℓ = 2. We refer the reader to Figure 2 for an illustration
of our constructions and notation inside the plane. Let 𝜃 denote the angle between the
vectors 𝑐+ − 𝑎 and 𝑐− − 𝑎, and let 𝑥1 = |𝑐+ − 𝑎 | and 𝑥2 = |𝑐− − 𝑎 |. By Al Kashi’s formula,
we know that

|𝑃(𝑐+ − 𝑎) − 𝑃(𝑐− − 𝑎)|2 = 2 − 2 cos𝜃,

while

22(1−𝑛) = 𝑥2
1 + 𝑥

2
2 − 2𝑥1𝑥2 cos𝜃 = (𝑥1 − 𝑥2)2 + 𝑥1𝑥2(2 − 2 cos𝜃).

Hence,

|𝑃(𝑐+ − 𝑎) − 𝑃(𝑐− − 𝑎)|2 =
22(1−𝑛) − (𝑥1 − 𝑥2)2

𝑥1𝑥2
. (4.8)
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By another application of Al Kashi’s formula, we find

𝑥2
1 = 22(1−𝑛) + |𝑎 − 𝑐 |2 − 2 · 21−𝑛 |𝑎 − 𝑐 | cos 𝜑

and

𝑥2
2 = 22(1−𝑛) + |𝑎 − 𝑐 |2 + 2 · 21−𝑛 |𝑎 − 𝑐 | cos 𝜑.

Therefore, as either 𝑥1 ≥ |𝑎 − 𝑐 | or 𝑥2 ≥ |𝑎 − 𝑐 |, we find

|𝑥1 − 𝑥2 | |𝑎 − 𝑐 | ≤ |𝑥2
1 − 𝑥

2
2 | = 4 · 21−𝑛 |𝑎 − 𝑐 | |cos 𝜑 |,

so that, using (i), |𝑥1−𝑥2 | ≤ 1
221−𝑛 . Combining (i) and (ii), we also find that 𝑥1 ≃ |𝑎− 𝑐 | ≃

𝑥2. We conclude from (4.8) that

|𝑃(𝑐+ − 𝑎) − 𝑃(𝑐− − 𝑎)| ≳ 21−𝑛

|𝑎 − 𝑐 | ,

hence finishing the proof of the lemma. □

In view of the counterexample provided by Theorem 1.3, the reader might wonder
whether it would not be possible to work with a different singular projection, which
would satisfy improved estimates near its singular set, to overcome the above issue. We
conclude this section with a short discussion that strongly suggests that there is no such
hope.

We again work in the model case where 𝒩 = 𝕊ℓ−1 ⊂ ℝℓ . In order to perform the
approach by projection, we are looking for a retraction 𝑃 into 𝕊ℓ−1, which is defined on
the whole ℝℓ except on a finite set of point singularities. When restricting to 𝔹ℓ , by a
well-known fact from topology, there must exist at least one singular point 𝑎 ∈ 𝔹ℓ of 𝑃
such that, on any sufficiently small sphere centered at 𝑎, 𝑃 covers the whole 𝕊ℓ−1. It is
then easy to show that

lim
𝑟→0

sup
𝑥∈𝜕𝐵𝑎(𝑟)

|𝑥 − 𝑎 | |D𝑃(𝑥)| ≳ 1.

In some sense, this means that the rate of blow up

|D𝑃(𝑥)| ≃ 1
|𝑥 − 𝑎 |

near the singularity 𝑎 that was required for 𝑃 to be an ℓ -singular projection cannot be
improved. As our proof of Theorem 1.3 essentially relies on the estimate satisfied by
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𝑃, this suggests that there is no hope to find a singular projection of ℝℓ onto 𝕊ℓ−1 that
would avoid the obstruction observed above, although we shall not attempt to present
a complete argument here to avoid excessive technicality.

5 The method of almost projection

In this last section, we explain how the idea used in the proof of Theorem 1.3 can
also be used to show that the method of almost projection is also sensitive to the value
of 𝑝 instead of 𝑠𝑝 when 0 < 𝑠 < 1. Let us first explain the key idea of this method,
introduced by Hajłasz [Haj94] when 𝑠 = 1 and pursued by Bousquet, Ponce, and Van
Schaftingen [BPVS13] when 𝑠 ≥ 1, and which has been applied so far to obtain strong
and weak density results for smooth maps in Sobolev spaces of maps into manifolds
that are (⌊𝑠𝑝⌋ − 1)-connected, respectively (𝑠𝑝− 1) connected with 𝑠𝑝 ∈ ℕ∗. The starting
point is again the non-existence of a globally defined retraction Π : ℝ𝜈 → 𝒩. Instead
of giving up the well-definedness of the map Π on the whole ℝ𝜈 as for the method of
singular projection, the idea is to give up the fact that Π is a retraction on the whole
𝒩. That is, one is looking for a smooth map 𝑃 : ℝ𝜈 → 𝒩 that coincides with id𝒩 on 𝒩

except on a small set where 𝑃(𝑥) ≠ 𝑥.
More precisely, it can be proved, see e.g. [BPVS13, Proposition 2.1], that if 𝒩 is

(ℓ − 2)-connected, then for every 𝜀 > 0, there exists a smooth map 𝑃 = 𝑃𝜀 : ℝ𝜈 → 𝒩

such that 𝑃 = id𝒩 on 𝒩 \ 𝐾, where 𝐾 = 𝐾𝜀 is a compact subset of 𝒩 with |𝐾 | ≲ 𝜀ℓ−1,
and such that

∥D𝑗𝑃∥𝐿∞ ≲ 𝜀−𝑗 for every 𝑗 ∈ ℕ∗. (5.1)

To make our discussion more specific, we restrict to the case where 𝒩 = 𝕊ℓ−1 ⊂ ℝℓ .
In this situation, such a map 𝑃 can be constructed by hand. Indeed, one lets 𝐾 = 𝐵𝜀(𝑎)
be the closure of the geodesic ball in 𝕊ℓ−1 of radius 𝜀 and centered at 𝑎, for any choice of
𝑎 = 𝑎𝜀 ∈ 𝕊ℓ−1, and defines 𝑃 on 𝐾 as a covering of 𝕊ℓ−1 \ int𝐾 by 𝐾 that coincides with
the identity on 𝜕𝐾, obtained for instance via a stereographic projection; hence, 𝑃 has
degree 0, and can therefore be extended to an 𝕊ℓ−1-valued map defined on the whole
ℝℓ . For this construction, more can be said about the behavior of 𝑃 on 𝐾:

|𝑃(𝑥) − 𝑃(𝑦)| ≃ 𝜀−1 |𝑥 − 𝑦 | for every 𝑥, 𝑦 ∈ 𝐵𝜀/2(𝑎). (5.2)

A crucial result concerning such a map 𝑃 is the following, which relies once again
on the Federer and Fleming averaging argument. We denote by Π : ℝ𝜈 → ℝ𝜈 a chosen
smooth extension — non necessarily𝒩-valued — of the nearest point projectionΠ : 𝒩+
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𝐵𝜈
𝜄 → 𝒩. If 𝑠 ≥ 1 and 𝑠𝑝 ≤ ℓ − 1, then for every 𝜀, there exists 𝜉𝜀 such that

sup
𝜀>0

|𝑃𝜀 ◦Π ◦ (𝑢 − 𝜉𝜀)|𝑊 𝑠,𝑝(ℳ) < +∞ for every 𝑢 ∈𝑊 𝑠,𝑝(ℳ;𝒩).

If we actually have 𝑠𝑝 < ℓ − 1, then it even holds that

(Π(· − 𝜉𝜀)|𝒩)−1 ◦ 𝑃𝜀 ◦Π ◦ (𝑢 − 𝜉𝜀) → 𝑢 in𝑊 𝑠,𝑝(ℳ;𝒩) as 𝜀 → 0.

With this at hand, it is easy to obtain a weak, respectively strong, approximation of 𝑢
with smooth maps, by considering the map (Π(· − 𝜉𝜀)|𝒩)−1 ◦ 𝑃𝜀 ◦Π ◦ (𝑢𝑘 − 𝜉𝜀), where
(𝑢𝑘)𝑘∈ℕ is a sequence of ℝ𝜈-valued smooth maps strongly converging to 𝑢 in 𝑊 𝑠,𝑝 , and
where 𝑘 = 𝑘𝜀 is chosen sufficiently large via a diagonal argument, using the continuity
of the composition operator on Sobolev spaces.

The following result shows that, in some sense, the method of almost projection is
also sensitive to the more restrictive threshold 𝑝 > ℓ − 1 when 0 < 𝑠 < 1.

Proposition 5.1. Assume that 0 < 𝑠 < 1 and 1 ≤ 𝑝 < +∞ are such that 𝑠𝑝 < ℓ − 1 but
𝑝 > ℓ − 1, and let 𝑃𝜀 : ℝℓ → 𝕊ℓ−1 be a family of almost retractions satisfying the additional
condition (5.2). There exists a map 𝑢 ∈𝑊 𝑠,𝑝(𝔹ℓ−1;𝕊ℓ−1), independent of 𝑃𝜀, such that

sup
𝜀>0

inf
𝜉∈𝐵ℓ𝜄

|𝑃𝜀 ◦Π ◦ (𝑢 − 𝜉)|𝑊 𝑠,𝑝(ℳ) = +∞.

Although the assumption (5.2) may seem to be more stringent than (5.1), it is in
practice satisfied by any almost retraction constructed in a reasonable way, in particular
using the general technique of construction provided, e.g., in the proof of [BPVS13,
Proposition 2.1] or in [Haj94, §2 to 4].

We also observe that, unlike for Theorem 1.3, here our method does not allow to cover
the limiting case 𝑝 = ℓ − 1, in which we expect the method of almost projection to be
applicable when 0 < 𝑠 < 1, for instance in the context of weak density of smooth maps.

Proof. As the construction is similar to the one in the proof of Theorem 1.3, we mostly
focus on what should be changed in the argument. Also, since we are working here with
𝕊ℓ−1-valued maps, we abuse the language by saying that a map is compactly supported
whenever it is constant outside of a compact set.

For some 𝑐 > 0 to be chosen sufficiently small later on, we consider a collection (𝑐𝑖)𝑖∈𝐼
of points in 𝕊ℓ−1, with |𝐼 | ≃ 𝜀1−ℓ , and such that any ball of radius 𝑐𝜀 on 𝕊ℓ−1 contains
at least one 𝑐𝑖 . For each 𝑖 ∈ 𝐼, we pick two points 𝑐−

𝑖
, 𝑐+

𝑖
∈ 𝕊ℓ−1 in 𝐵𝑐𝜀/2(𝑐𝑖) such that

dist(𝑐−
𝑖
, 𝑐+
𝑖
) ≃ 𝜀. We define the 𝕊ℓ−1-valued map 𝑣𝜀,𝑖 by mimicking the construction of

Lemma 4.1, replacing 𝑐± by 𝑐±
𝑖
, and we let 𝑣𝜀 be defined by gluing together translated

versions of the 𝑣𝜀,𝑖 , with 𝑖 ∈ 𝐼, so that their supports do not overlap.
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By the counterpart of (4.1) and the countable patching property of Sobolev mappings,
it holds that

ℰ𝑠,𝑝(𝑣𝜀 ,ℝℓ−1) ≲ |𝐼 | ≲ 𝜀1−ℓ .

On the other hand, if 𝑐 is chosen sufficiently small, then for every 𝑎 ∈ 𝕊ℓ−1 and for every
𝜉 with |𝜉| < 𝜄, there exists at least one 𝑖 ∈ 𝐼 such that Π ◦ (𝑐±

𝑖
− 𝜉) ∈ 𝐵𝜀/2(𝑎) and the

distance between both these points is of order 𝜀. Combining the counterpart of (4.2)
with (5.2), we find that

inf
𝜉∈𝐵ℓ𝜄

ℰ𝑠,𝑝(𝑃𝜀 ◦Π ◦ (𝑤𝜀 − 𝜉),ℝℓ−1) ≳ 𝜀−𝑝 .

To conclude the argument, we need to scale the maps 𝑣𝜀 to smaller balls, so that we
can glue them together to form the required map 𝑢. For this purpose, let 𝛼 > 1 to be
chosen sufficiently close to 1 later on. We observe that the construction of the 𝑣𝜀 may
be performed in such a way that its support is contained in a ball of radius of order 𝜀−1.
We define 𝑤𝜀(𝑥) = 𝑣𝜀(𝑥/𝜀𝛼(ℓ−1)/(ℓ−1−𝑠𝑝)). Hence,

(i) the support of 𝑤𝜀 is contained in a ball of radius of order 𝜀𝛼(ℓ−1)/(ℓ−1−𝑠𝑝);

(ii) ℰ𝑠,𝑝(𝑤𝜀 ,ℝ
ℓ−1) ≲ 𝜀𝛼(ℓ−1)𝜀1−ℓ ;

(iii) inf
𝜉∈𝐵ℓ𝜄

ℰ𝑠,𝑝(𝑃𝜀 ◦Π ◦ (𝑤𝜀 − 𝜉),ℝℓ−1) ≳ 𝜀𝛼(ℓ−1)𝜀−𝑝 .

We choose 𝛼 > 1 sufficiently close to 1 so that 𝛼(ℓ − 1) − 𝑝 < 0. We now define 𝑢
by gluing together translated copies of the 𝑤𝜀𝑛 so that their supports do not overlap,
where 𝜀𝑛 = 2−𝑛 . Property (i) ensures that this can be done in a ball of fixed radius —
up to an additional scaling, we may assume that 𝑢 is supported in 𝔹ℓ−1. Property (ii)
and the countable patching property of Sobolev maps ensure that 𝑢 ∈ 𝑊 𝑠,𝑝 . Finally,
property (iii) ensures that

sup
𝜀>0

inf
𝜉∈𝐵ℓ𝜄

|𝑃𝜀 ◦Π ◦ (𝑢 − 𝜉)|𝑊 𝑠,𝑝(ℳ) = +∞,

which concludes the proof of the proposition. □

We observe that, in the proof of Proposition 5.1, the last step is very similar to the
proof of the nonlinear uniform boundedness principle. However, here this principle
could not be applied as such, as the energy under consideration is not superadditive
due to the presence of the sup over 𝜀. In our specific situation, it is nevertheless possible
to mimic the proof of the nonlinear uniform boundedness principle without relying

29



on the superadditivity assumption of the energy. This is possible because the maps
𝑣𝜀 that we construct to contradict the linear growth of the energy with respect to the
Sobolev energy, and which are to be scaled and glued together to reach the conclusion,
can be chosen to be compactly supported, which removes the need of the clustering
step — see [MVS19], and also the proof of Lemma 4.1 — which is the place where this
assumption is used.
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